利用智能下部结构替换策略对非线性 RC 结构进行实用的多尺度分析

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Soil Dynamics and Earthquake Engineering Pub Date : 2024-09-27 DOI:10.1016/j.soildyn.2024.108997
{"title":"利用智能下部结构替换策略对非线性 RC 结构进行实用的多尺度分析","authors":"","doi":"10.1016/j.soildyn.2024.108997","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel practical multiscale analysis (MSA) method for simulating local damages in large reinforced concrete (RC) structures during seismic events. Traditional techniques like the finite element (FE) method often struggle to balance computational costs with detailed simulation. The proposed method facilitates sequential local refinement from macroscopic to mesoscopic scales of RC structures, focusing strategically on critical areas prone to damage and cracking. Key features include: (1) 'Correction forces' enable integration and collaboration among models of different refinement levels, keeping models unchanged (i.e., without additions, deletions, or further refinement of elements), streamlining analysis and independent implementation across methods, scales, and platforms. (2) A smart replacement strategy ensures smooth transitions and prevents abrupt force changes between models at different refinement levels. (3) A ‘training process’ before performing the replacement and a semi-explicit method guarantee the accuracy and efficiency of the MSA method. (4) Parallel and distributed computing is seamlessly applied, significantly accelerating the analysis at each level. Implemented in the open-source software OpenSees, this method is illustrated through three examples that efficiently capture both the macroscopic mechanical responses and detailed local damage behaviors. This approach provides a valuable tool for the refined analysis of large-scale RC structures.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A practical multiscale analysis for nonlinear RC structures using a smart substructure replacement strategy\",\"authors\":\"\",\"doi\":\"10.1016/j.soildyn.2024.108997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a novel practical multiscale analysis (MSA) method for simulating local damages in large reinforced concrete (RC) structures during seismic events. Traditional techniques like the finite element (FE) method often struggle to balance computational costs with detailed simulation. The proposed method facilitates sequential local refinement from macroscopic to mesoscopic scales of RC structures, focusing strategically on critical areas prone to damage and cracking. Key features include: (1) 'Correction forces' enable integration and collaboration among models of different refinement levels, keeping models unchanged (i.e., without additions, deletions, or further refinement of elements), streamlining analysis and independent implementation across methods, scales, and platforms. (2) A smart replacement strategy ensures smooth transitions and prevents abrupt force changes between models at different refinement levels. (3) A ‘training process’ before performing the replacement and a semi-explicit method guarantee the accuracy and efficiency of the MSA method. (4) Parallel and distributed computing is seamlessly applied, significantly accelerating the analysis at each level. Implemented in the open-source software OpenSees, this method is illustrated through three examples that efficiently capture both the macroscopic mechanical responses and detailed local damage behaviors. This approach provides a valuable tool for the refined analysis of large-scale RC structures.</div></div>\",\"PeriodicalId\":49502,\"journal\":{\"name\":\"Soil Dynamics and Earthquake Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Dynamics and Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0267726124005499\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726124005499","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新颖实用的多尺度分析(MSA)方法,用于模拟地震事件中大型钢筋混凝土(RC)结构的局部破坏。有限元(FE)方法等传统技术往往难以在计算成本与详细模拟之间取得平衡。所提出的方法有助于从宏观到中观尺度对 RC 结构进行有序的局部细化,战略性地关注容易发生损坏和开裂的关键区域。主要特点包括(1) "修正力 "可实现不同细化级别模型之间的集成与协作,保持模型不变(即不添加、删除或进一步细化元素),简化分析并跨方法、尺度和平台独立实施。(2) 智能替换策略可确保平稳过渡,防止不同细化程度的模型之间发生突然的受力变化。(3) 替换前的 "训练过程 "和半显式方法保证了 MSA 方法的准确性和效率。(4) 并行和分布式计算的无缝应用,大大加快了各层次分析的速度。该方法在开源软件 OpenSees 中实施,并通过三个实例进行了说明,这些实例有效地捕捉了宏观机械响应和详细的局部损伤行为。这种方法为大规模 RC 结构的精细分析提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A practical multiscale analysis for nonlinear RC structures using a smart substructure replacement strategy
This paper presents a novel practical multiscale analysis (MSA) method for simulating local damages in large reinforced concrete (RC) structures during seismic events. Traditional techniques like the finite element (FE) method often struggle to balance computational costs with detailed simulation. The proposed method facilitates sequential local refinement from macroscopic to mesoscopic scales of RC structures, focusing strategically on critical areas prone to damage and cracking. Key features include: (1) 'Correction forces' enable integration and collaboration among models of different refinement levels, keeping models unchanged (i.e., without additions, deletions, or further refinement of elements), streamlining analysis and independent implementation across methods, scales, and platforms. (2) A smart replacement strategy ensures smooth transitions and prevents abrupt force changes between models at different refinement levels. (3) A ‘training process’ before performing the replacement and a semi-explicit method guarantee the accuracy and efficiency of the MSA method. (4) Parallel and distributed computing is seamlessly applied, significantly accelerating the analysis at each level. Implemented in the open-source software OpenSees, this method is illustrated through three examples that efficiently capture both the macroscopic mechanical responses and detailed local damage behaviors. This approach provides a valuable tool for the refined analysis of large-scale RC structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
期刊最新文献
Study on deformation patterns of tunnel isolation layers and seismic response of a shield tunnel A method to truncate elastic half-plane for soil–structure interaction analysis under moving loads and its implementation to ABAQUS High robust eddy current tuned tandem mass dampers-inerters for structures under the ground acceleration Simplified site response analysis for regional seismic risk assessments Long-term effect of soil settlement on lateral dynamic responses of end-bearing friction pile
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1