{"title":"不同密度 3D 打印仿生结构制备的中底足底压力分析","authors":"Jing Li, Imjoo Jung, Sunhee Lee","doi":"10.1186/s40691-024-00402-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of 3D printed midsoles with biomimetic structures of varying densities on plantar pressure during static and dynamic motions. The midsoles were designed with three densities of Tyson polygon (TS) structures: 1TS, 2TS, and 3TS. Plantar pressure tests were conducted on midsoles during static and dynamic motions such as walking, running, and jumping. The data were analyzed based on hypotheses related to samples, motions, and 10 plantar pressure zones. As results, for static motion, all midsoles improved pressure distribution and reduced peak pressure compared to barefoot conditions, with 1TS being the most effective. During dynamic motions, 1TS and 2TS effectively distributed plantar pressure in the midfoot and heel areas, while 3TS provided better support and stability during high-intensity activities like jumping. Statistical analysis revealed that 1TS offered comfort and flexibility but lacked support, 2TS balanced support and cushioning, and 3TS provided superior support and stability but reduced elasticity during jumps. In dynamic motions, 1TS excelled in walking, and 2TS performed best in high-intensity activities such as running and jumping. In the meta areas (M2 and M3), 1TS reduced pressure by over 30% during walking and nearly 40% during running, while 3TS showed similar reductions during jumping, with BF showing higher pressures compared to running. Thus, this study highlights the effectiveness of 1TS and 2TS in reducing pressure in the meta and midfoot areas, emphasizing the importance of selecting the right midsole density for optimal comfort and performance across different activities.</p></div>","PeriodicalId":555,"journal":{"name":"Fashion and Textiles","volume":"11 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-024-00402-x","citationCount":"0","resultStr":"{\"title\":\"Analysis of plantar pressure of midsole prepared by 3d printed biomimetic structures with different densities\",\"authors\":\"Jing Li, Imjoo Jung, Sunhee Lee\",\"doi\":\"10.1186/s40691-024-00402-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the impact of 3D printed midsoles with biomimetic structures of varying densities on plantar pressure during static and dynamic motions. The midsoles were designed with three densities of Tyson polygon (TS) structures: 1TS, 2TS, and 3TS. Plantar pressure tests were conducted on midsoles during static and dynamic motions such as walking, running, and jumping. The data were analyzed based on hypotheses related to samples, motions, and 10 plantar pressure zones. As results, for static motion, all midsoles improved pressure distribution and reduced peak pressure compared to barefoot conditions, with 1TS being the most effective. During dynamic motions, 1TS and 2TS effectively distributed plantar pressure in the midfoot and heel areas, while 3TS provided better support and stability during high-intensity activities like jumping. Statistical analysis revealed that 1TS offered comfort and flexibility but lacked support, 2TS balanced support and cushioning, and 3TS provided superior support and stability but reduced elasticity during jumps. In dynamic motions, 1TS excelled in walking, and 2TS performed best in high-intensity activities such as running and jumping. In the meta areas (M2 and M3), 1TS reduced pressure by over 30% during walking and nearly 40% during running, while 3TS showed similar reductions during jumping, with BF showing higher pressures compared to running. Thus, this study highlights the effectiveness of 1TS and 2TS in reducing pressure in the meta and midfoot areas, emphasizing the importance of selecting the right midsole density for optimal comfort and performance across different activities.</p></div>\",\"PeriodicalId\":555,\"journal\":{\"name\":\"Fashion and Textiles\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-024-00402-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fashion and Textiles\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40691-024-00402-x\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fashion and Textiles","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40691-024-00402-x","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Analysis of plantar pressure of midsole prepared by 3d printed biomimetic structures with different densities
This study investigates the impact of 3D printed midsoles with biomimetic structures of varying densities on plantar pressure during static and dynamic motions. The midsoles were designed with three densities of Tyson polygon (TS) structures: 1TS, 2TS, and 3TS. Plantar pressure tests were conducted on midsoles during static and dynamic motions such as walking, running, and jumping. The data were analyzed based on hypotheses related to samples, motions, and 10 plantar pressure zones. As results, for static motion, all midsoles improved pressure distribution and reduced peak pressure compared to barefoot conditions, with 1TS being the most effective. During dynamic motions, 1TS and 2TS effectively distributed plantar pressure in the midfoot and heel areas, while 3TS provided better support and stability during high-intensity activities like jumping. Statistical analysis revealed that 1TS offered comfort and flexibility but lacked support, 2TS balanced support and cushioning, and 3TS provided superior support and stability but reduced elasticity during jumps. In dynamic motions, 1TS excelled in walking, and 2TS performed best in high-intensity activities such as running and jumping. In the meta areas (M2 and M3), 1TS reduced pressure by over 30% during walking and nearly 40% during running, while 3TS showed similar reductions during jumping, with BF showing higher pressures compared to running. Thus, this study highlights the effectiveness of 1TS and 2TS in reducing pressure in the meta and midfoot areas, emphasizing the importance of selecting the right midsole density for optimal comfort and performance across different activities.
期刊介绍:
Fashion and Textiles aims to advance knowledge and to seek new perspectives in the fashion and textiles industry worldwide. We welcome original research articles, reviews, case studies, book reviews and letters to the editor.
The scope of the journal includes the following four technical research divisions:
Textile Science and Technology: Textile Material Science and Technology; Dyeing and Finishing; Smart and Intelligent Textiles
Clothing Science and Technology: Physiology of Clothing/Textile Products; Protective clothing ; Smart and Intelligent clothing; Sportswear; Mass customization ; Apparel manufacturing
Economics of Clothing and Textiles/Fashion Business: Management of the Clothing and Textiles Industry; Merchandising; Retailing; Fashion Marketing; Consumer Behavior; Socio-psychology of Fashion
Fashion Design and Cultural Study on Fashion: Aesthetic Aspects of Fashion Product or Design Process; Textiles/Clothing/Fashion Design; Fashion Trend; History of Fashion; Costume or Dress; Fashion Theory; Fashion journalism; Fashion exhibition.