Franck Brocherie, Olivier Girard, Adèle Mornas, Janne Bouten, Grégoire P. Millet
{"title":"面对全球变暖,\"Citius、altius、fortius\":并不像看上去那么简单","authors":"Franck Brocherie, Olivier Girard, Adèle Mornas, Janne Bouten, Grégoire P. Millet","doi":"10.1038/s41612-024-00774-3","DOIUrl":null,"url":null,"abstract":"In the context of global warming, the reduction in air density, directly driven by rising air temperature, has been identified to enhance athletic anaerobic performance. However, the effect of heat is likely exercise-, intensity- and time-dependent with different physiological mechanisms. It is therefore imperative to clarify some points to not disrupt the disseminated message in order to protect the general population from heat-related illnesses.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-2"},"PeriodicalIF":8.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00774-3.pdf","citationCount":"0","resultStr":"{\"title\":\"“Citius, altius, fortius” in the face of global warming: not as simple as it seems\",\"authors\":\"Franck Brocherie, Olivier Girard, Adèle Mornas, Janne Bouten, Grégoire P. Millet\",\"doi\":\"10.1038/s41612-024-00774-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of global warming, the reduction in air density, directly driven by rising air temperature, has been identified to enhance athletic anaerobic performance. However, the effect of heat is likely exercise-, intensity- and time-dependent with different physiological mechanisms. It is therefore imperative to clarify some points to not disrupt the disseminated message in order to protect the general population from heat-related illnesses.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-2\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00774-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00774-3\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00774-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
“Citius, altius, fortius” in the face of global warming: not as simple as it seems
In the context of global warming, the reduction in air density, directly driven by rising air temperature, has been identified to enhance athletic anaerobic performance. However, the effect of heat is likely exercise-, intensity- and time-dependent with different physiological mechanisms. It is therefore imperative to clarify some points to not disrupt the disseminated message in order to protect the general population from heat-related illnesses.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.