裂纹尖端溶解的双重作用

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Materials Degradation Pub Date : 2024-09-30 DOI:10.1038/s41529-024-00513-2
Mingjie Zhao, Wenjia Gu, Derek H. Warner
{"title":"裂纹尖端溶解的双重作用","authors":"Mingjie Zhao, Wenjia Gu, Derek H. Warner","doi":"10.1038/s41529-024-00513-2","DOIUrl":null,"url":null,"abstract":"The scientific literature is rife with conflicting reports regarding the effect of dissolution on fracture. The complexity arises, in part, due to dissolution often being intertwined with various other mechanisms such as hydrogen embrittlement and the formation of debris behind an advancing crack, which can obfuscate the sole contribution of dissolution. Here, we report on the effect of dissolution when acting in isolation via the utilization of an efficient atomistic-based multiscale modeling technique and a specialized interatomic potential. Our results reveal a dual role of dissolution on crack behavior, introducing an additional layer of complexity to the mechanistic basis of environmental effects. This finding, while challenging for engineering prognosis, provides a route for engineering improved materials. Recognizing and navigating this duality could be pivotal to precluding potentially disastrous consequences in a broad array of engineering applications, from harnessing earth’s energy resources to aerospace technologies.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-7"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00513-2.pdf","citationCount":"0","resultStr":"{\"title\":\"The dual role of dissolution at a crack tip\",\"authors\":\"Mingjie Zhao, Wenjia Gu, Derek H. Warner\",\"doi\":\"10.1038/s41529-024-00513-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scientific literature is rife with conflicting reports regarding the effect of dissolution on fracture. The complexity arises, in part, due to dissolution often being intertwined with various other mechanisms such as hydrogen embrittlement and the formation of debris behind an advancing crack, which can obfuscate the sole contribution of dissolution. Here, we report on the effect of dissolution when acting in isolation via the utilization of an efficient atomistic-based multiscale modeling technique and a specialized interatomic potential. Our results reveal a dual role of dissolution on crack behavior, introducing an additional layer of complexity to the mechanistic basis of environmental effects. This finding, while challenging for engineering prognosis, provides a route for engineering improved materials. Recognizing and navigating this duality could be pivotal to precluding potentially disastrous consequences in a broad array of engineering applications, from harnessing earth’s energy resources to aerospace technologies.\",\"PeriodicalId\":19270,\"journal\":{\"name\":\"npj Materials Degradation\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41529-024-00513-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Materials Degradation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41529-024-00513-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00513-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

关于溶解对断裂的影响,科学文献中充斥着相互矛盾的报道。造成这种复杂性的部分原因是溶解通常与其他各种机制交织在一起,例如氢脆和在前进的裂纹后形成碎屑,这可能会掩盖溶解的唯一作用。在此,我们利用基于原子的高效多尺度建模技术和专门的原子间势能,报告了溶解在单独作用时的效果。我们的研究结果揭示了溶解对裂纹行为的双重作用,为环境效应的机理基础引入了另一层复杂性。这一发现虽然对工程预测具有挑战性,但却为改进材料的工程设计提供了一条途径。认识并驾驭这种双重性,对于在从利用地球能源到航空航天技术等广泛的工程应用中避免潜在的灾难性后果至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The dual role of dissolution at a crack tip
The scientific literature is rife with conflicting reports regarding the effect of dissolution on fracture. The complexity arises, in part, due to dissolution often being intertwined with various other mechanisms such as hydrogen embrittlement and the formation of debris behind an advancing crack, which can obfuscate the sole contribution of dissolution. Here, we report on the effect of dissolution when acting in isolation via the utilization of an efficient atomistic-based multiscale modeling technique and a specialized interatomic potential. Our results reveal a dual role of dissolution on crack behavior, introducing an additional layer of complexity to the mechanistic basis of environmental effects. This finding, while challenging for engineering prognosis, provides a route for engineering improved materials. Recognizing and navigating this duality could be pivotal to precluding potentially disastrous consequences in a broad array of engineering applications, from harnessing earth’s energy resources to aerospace technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
期刊最新文献
Systematic quantification of hydrogen in pipeline steel by atom probe tomography after ambient charging and transfer Corrosion evaluation of Al-Cu-Mn-Zr cast alloys in 3.5% NaCl solution Fracture analysis under modes I and II of adhesive joints on CFRP in saline environment Microscale chemical imaging to characterize and quantify corrosion processes at the metal-electrolyte interface Microstructure engineering for corrosion resistance in structural alloy design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1