{"title":"多年期拉尼娜现象的频发与热带太平洋风向南移有关","authors":"Guojian Wang, Agus Santoso","doi":"10.1038/s41612-024-00772-5","DOIUrl":null,"url":null,"abstract":"Multi-year La Niña events cause prolonged climate disruptions worldwide, but a systematic understanding of the underlying mechanisms is not yet established. Here we show using observations and models from the sixth phase of Coupled Model Intercomparison Project that a greater frequency of consecutive La Niña events is tied to the upper equatorial Pacific Ocean when it favors more rapid heat discharge. The propensity for heat discharge is underscored by negative skewness in upper-ocean heat content, underpinned by southward tropical Pacific wind shift during austral summer. Models with stronger westerly anomalies south of the equator simulate steeper east-to-west upward tilt of the thermocline that is favorable for a greater discharge rate. This highlights the crucial role of the southward wind shift in the nonlinear system of the El Niño-Southern Oscillation. The large inter-model spread in multi-year La Niña processes underscores the need in constraining models for reliable climate prediction and projection.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-8"},"PeriodicalIF":8.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00772-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Multi-year La Niña frequency tied to southward tropical Pacific wind shift\",\"authors\":\"Guojian Wang, Agus Santoso\",\"doi\":\"10.1038/s41612-024-00772-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-year La Niña events cause prolonged climate disruptions worldwide, but a systematic understanding of the underlying mechanisms is not yet established. Here we show using observations and models from the sixth phase of Coupled Model Intercomparison Project that a greater frequency of consecutive La Niña events is tied to the upper equatorial Pacific Ocean when it favors more rapid heat discharge. The propensity for heat discharge is underscored by negative skewness in upper-ocean heat content, underpinned by southward tropical Pacific wind shift during austral summer. Models with stronger westerly anomalies south of the equator simulate steeper east-to-west upward tilt of the thermocline that is favorable for a greater discharge rate. This highlights the crucial role of the southward wind shift in the nonlinear system of the El Niño-Southern Oscillation. The large inter-model spread in multi-year La Niña processes underscores the need in constraining models for reliable climate prediction and projection.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00772-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00772-5\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00772-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Multi-year La Niña frequency tied to southward tropical Pacific wind shift
Multi-year La Niña events cause prolonged climate disruptions worldwide, but a systematic understanding of the underlying mechanisms is not yet established. Here we show using observations and models from the sixth phase of Coupled Model Intercomparison Project that a greater frequency of consecutive La Niña events is tied to the upper equatorial Pacific Ocean when it favors more rapid heat discharge. The propensity for heat discharge is underscored by negative skewness in upper-ocean heat content, underpinned by southward tropical Pacific wind shift during austral summer. Models with stronger westerly anomalies south of the equator simulate steeper east-to-west upward tilt of the thermocline that is favorable for a greater discharge rate. This highlights the crucial role of the southward wind shift in the nonlinear system of the El Niño-Southern Oscillation. The large inter-model spread in multi-year La Niña processes underscores the need in constraining models for reliable climate prediction and projection.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.