Dan Liu, Wen-Jin Wang, Parvej Alam, Zhan Yang, Kaiwen Wu, Lixun Zhu, Yu Xiong, Shuai Chang, Yong Liu, Bo Wu, Qian Wu, Zijie Qiu, Zheng Zhao, Ben Zhong Tang
{"title":"溶液和聚合体中的高效圆偏振近红外磷光体","authors":"Dan Liu, Wen-Jin Wang, Parvej Alam, Zhan Yang, Kaiwen Wu, Lixun Zhu, Yu Xiong, Shuai Chang, Yong Liu, Bo Wu, Qian Wu, Zijie Qiu, Zheng Zhao, Ben Zhong Tang","doi":"10.1038/s41566-024-01538-4","DOIUrl":null,"url":null,"abstract":"<p>Circularly polarized phosphorescence (CPP) is a spin-forbidden radiative process, and its underlying mechanism is not comprehensively understood, mainly due to the limited examples of efficient triplet emission from small chiral organic molecules with well-defined structures. Here we investigate a pair of chiral enantiomers, <i>R</i>- and <i>S</i>-BBTI, that feature highly distorted spiral ring-locked heteroaromatics with heavy iodine atoms. These chiral molecules are found to exhibit large dissymmetry factors up to 0.013 and emit near-infrared CPP with an efficiency of 4.2% and a lifetime of 119 μs in dimethyl sulfoxide solution excited by ultraviolet irradiation. Their crystals show efficient CPP with 7.0% quantum efficiency and a lifetime of 166 μs. Extensive experimental chiroptical investigations combined with theoretical calculations reveal an efficient spin-flip process that modulates the electron and magnetic transition dipole moments to enhance CPP performance. Moreover, the phosphorescence of <i>R</i>/<i>S</i>-BBTI is oxygen-sensitive and photoactivatable in dimethyl sulfoxide. Therefore, <i>R</i>/<i>S</i>-BBTI can be applied for hypoxia imaging in cells and tumours, expanding the application scope of CPP materials.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":51.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient circularly polarized near-infrared phosphorescence in both solution and aggregate\",\"authors\":\"Dan Liu, Wen-Jin Wang, Parvej Alam, Zhan Yang, Kaiwen Wu, Lixun Zhu, Yu Xiong, Shuai Chang, Yong Liu, Bo Wu, Qian Wu, Zijie Qiu, Zheng Zhao, Ben Zhong Tang\",\"doi\":\"10.1038/s41566-024-01538-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Circularly polarized phosphorescence (CPP) is a spin-forbidden radiative process, and its underlying mechanism is not comprehensively understood, mainly due to the limited examples of efficient triplet emission from small chiral organic molecules with well-defined structures. Here we investigate a pair of chiral enantiomers, <i>R</i>- and <i>S</i>-BBTI, that feature highly distorted spiral ring-locked heteroaromatics with heavy iodine atoms. These chiral molecules are found to exhibit large dissymmetry factors up to 0.013 and emit near-infrared CPP with an efficiency of 4.2% and a lifetime of 119 μs in dimethyl sulfoxide solution excited by ultraviolet irradiation. Their crystals show efficient CPP with 7.0% quantum efficiency and a lifetime of 166 μs. Extensive experimental chiroptical investigations combined with theoretical calculations reveal an efficient spin-flip process that modulates the electron and magnetic transition dipole moments to enhance CPP performance. Moreover, the phosphorescence of <i>R</i>/<i>S</i>-BBTI is oxygen-sensitive and photoactivatable in dimethyl sulfoxide. Therefore, <i>R</i>/<i>S</i>-BBTI can be applied for hypoxia imaging in cells and tumours, expanding the application scope of CPP materials.</p>\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41566-024-01538-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01538-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Highly efficient circularly polarized near-infrared phosphorescence in both solution and aggregate
Circularly polarized phosphorescence (CPP) is a spin-forbidden radiative process, and its underlying mechanism is not comprehensively understood, mainly due to the limited examples of efficient triplet emission from small chiral organic molecules with well-defined structures. Here we investigate a pair of chiral enantiomers, R- and S-BBTI, that feature highly distorted spiral ring-locked heteroaromatics with heavy iodine atoms. These chiral molecules are found to exhibit large dissymmetry factors up to 0.013 and emit near-infrared CPP with an efficiency of 4.2% and a lifetime of 119 μs in dimethyl sulfoxide solution excited by ultraviolet irradiation. Their crystals show efficient CPP with 7.0% quantum efficiency and a lifetime of 166 μs. Extensive experimental chiroptical investigations combined with theoretical calculations reveal an efficient spin-flip process that modulates the electron and magnetic transition dipole moments to enhance CPP performance. Moreover, the phosphorescence of R/S-BBTI is oxygen-sensitive and photoactivatable in dimethyl sulfoxide. Therefore, R/S-BBTI can be applied for hypoxia imaging in cells and tumours, expanding the application scope of CPP materials.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.