María Eugenia Gómez, Laura Isabel Fernández, Hayo Hase
{"title":"南美洲潜在地点对 VGOS 全球网络的贡献","authors":"María Eugenia Gómez, Laura Isabel Fernández, Hayo Hase","doi":"10.1007/s00190-024-01897-4","DOIUrl":null,"url":null,"abstract":"<p>Very-long-baseline interferometry (VLBI) networks have historically lacked enough antennas to densify the southern hemisphere adequately. This situation not only impacts directly the realization of the Celestial Reference System but also the determination of the Earth Orientation Parameters (EOP). In the last years, a significant step in the modernization of the VLBI infrastructure has been taken with the VLBI Global Observing System (VGOS). However, the distribution of VGOS antennas is still far from being homogeneous. In this work, we used the software VieSched<span>++</span> for VLBI scheduling to simulate nine new VGOS arrays. These networks, which are more dense in the southern hemisphere and focus on South America, were planned considering existing geodetic sites where a VGOS antenna could be added and new sites where the installation is feasible. We compared the statistical performance of the proposed networks with that of a simulated standard VGOS network and the actual VGOS performance for the last 2 years. A more uniform station distribution does not seem to be associated with better repeatabilities for station coordinates, but the results for EOP and source coordinates improve as expected.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"202 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contribution to the global VGOS network by potential sites in South America\",\"authors\":\"María Eugenia Gómez, Laura Isabel Fernández, Hayo Hase\",\"doi\":\"10.1007/s00190-024-01897-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Very-long-baseline interferometry (VLBI) networks have historically lacked enough antennas to densify the southern hemisphere adequately. This situation not only impacts directly the realization of the Celestial Reference System but also the determination of the Earth Orientation Parameters (EOP). In the last years, a significant step in the modernization of the VLBI infrastructure has been taken with the VLBI Global Observing System (VGOS). However, the distribution of VGOS antennas is still far from being homogeneous. In this work, we used the software VieSched<span>++</span> for VLBI scheduling to simulate nine new VGOS arrays. These networks, which are more dense in the southern hemisphere and focus on South America, were planned considering existing geodetic sites where a VGOS antenna could be added and new sites where the installation is feasible. We compared the statistical performance of the proposed networks with that of a simulated standard VGOS network and the actual VGOS performance for the last 2 years. A more uniform station distribution does not seem to be associated with better repeatabilities for station coordinates, but the results for EOP and source coordinates improve as expected.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"202 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01897-4\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01897-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Contribution to the global VGOS network by potential sites in South America
Very-long-baseline interferometry (VLBI) networks have historically lacked enough antennas to densify the southern hemisphere adequately. This situation not only impacts directly the realization of the Celestial Reference System but also the determination of the Earth Orientation Parameters (EOP). In the last years, a significant step in the modernization of the VLBI infrastructure has been taken with the VLBI Global Observing System (VGOS). However, the distribution of VGOS antennas is still far from being homogeneous. In this work, we used the software VieSched++ for VLBI scheduling to simulate nine new VGOS arrays. These networks, which are more dense in the southern hemisphere and focus on South America, were planned considering existing geodetic sites where a VGOS antenna could be added and new sites where the installation is feasible. We compared the statistical performance of the proposed networks with that of a simulated standard VGOS network and the actual VGOS performance for the last 2 years. A more uniform station distribution does not seem to be associated with better repeatabilities for station coordinates, but the results for EOP and source coordinates improve as expected.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics