{"title":"海洋幼虫散布的健康后果:邻近密度、排列和遗传亲缘关系对无柄无脊椎动物的生存、生长、繁殖和父子关系的作用。","authors":"Danielle K Barnes, Scott C Burgess","doi":"10.1093/jeb/voae125","DOIUrl":null,"url":null,"abstract":"<p><p>Dispersal can evolve as an adaptation to escape competition with conspecifics or kin. Locations with a low density of conspecifics, however, may also lead to reduced opportunities for mating, especially in sessile marine invertebrates with proximity-dependent mating success. Since there are few experimental investigations, we performed a series of field experiments using an experimentally tractable species (the bryozoan Bugula neritina) to test the hypothesis that the density, spatial arrangement, and genetic relatedness of neighbours differentially affect survival, growth, reproduction, paternity, and sperm dispersal. We manipulated the density and relatedness of neighbours and found that increased density reduced survival but not growth rate, and that there was no effect of relatedness on survival, growth, or fecundity, in contrast to previous studies. We also manipulated the distances to the nearest neighbour and used genetic markers to assign paternity within known mother-offspring groups to estimate how proximity affects mating success. Distance to the nearest neighbour did not affect the number of settlers produced, the paternity share, or the degree of multiple paternity. Overall, larger than expected sperm dispersal led to high multiple paternity, regardless of the distance to the nearest neighbour. Our results have important implications for understanding selection on dispersal distance: in this system, there are few disadvantages to the limited larval dispersal that does occur and limited advantages for larvae to disperse further than a few 10s of metres.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"28-40"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fitness consequences of marine larval dispersal: the role of neighbourhood density, arrangement, and genetic relatedness on survival, growth, reproduction, and paternity in a sessile invertebrate.\",\"authors\":\"Danielle K Barnes, Scott C Burgess\",\"doi\":\"10.1093/jeb/voae125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dispersal can evolve as an adaptation to escape competition with conspecifics or kin. Locations with a low density of conspecifics, however, may also lead to reduced opportunities for mating, especially in sessile marine invertebrates with proximity-dependent mating success. Since there are few experimental investigations, we performed a series of field experiments using an experimentally tractable species (the bryozoan Bugula neritina) to test the hypothesis that the density, spatial arrangement, and genetic relatedness of neighbours differentially affect survival, growth, reproduction, paternity, and sperm dispersal. We manipulated the density and relatedness of neighbours and found that increased density reduced survival but not growth rate, and that there was no effect of relatedness on survival, growth, or fecundity, in contrast to previous studies. We also manipulated the distances to the nearest neighbour and used genetic markers to assign paternity within known mother-offspring groups to estimate how proximity affects mating success. Distance to the nearest neighbour did not affect the number of settlers produced, the paternity share, or the degree of multiple paternity. Overall, larger than expected sperm dispersal led to high multiple paternity, regardless of the distance to the nearest neighbour. Our results have important implications for understanding selection on dispersal distance: in this system, there are few disadvantages to the limited larval dispersal that does occur and limited advantages for larvae to disperse further than a few 10s of metres.</p>\",\"PeriodicalId\":50198,\"journal\":{\"name\":\"Journal of Evolutionary Biology\",\"volume\":\" \",\"pages\":\"28-40\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolutionary Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jeb/voae125\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voae125","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Fitness consequences of marine larval dispersal: the role of neighbourhood density, arrangement, and genetic relatedness on survival, growth, reproduction, and paternity in a sessile invertebrate.
Dispersal can evolve as an adaptation to escape competition with conspecifics or kin. Locations with a low density of conspecifics, however, may also lead to reduced opportunities for mating, especially in sessile marine invertebrates with proximity-dependent mating success. Since there are few experimental investigations, we performed a series of field experiments using an experimentally tractable species (the bryozoan Bugula neritina) to test the hypothesis that the density, spatial arrangement, and genetic relatedness of neighbours differentially affect survival, growth, reproduction, paternity, and sperm dispersal. We manipulated the density and relatedness of neighbours and found that increased density reduced survival but not growth rate, and that there was no effect of relatedness on survival, growth, or fecundity, in contrast to previous studies. We also manipulated the distances to the nearest neighbour and used genetic markers to assign paternity within known mother-offspring groups to estimate how proximity affects mating success. Distance to the nearest neighbour did not affect the number of settlers produced, the paternity share, or the degree of multiple paternity. Overall, larger than expected sperm dispersal led to high multiple paternity, regardless of the distance to the nearest neighbour. Our results have important implications for understanding selection on dispersal distance: in this system, there are few disadvantages to the limited larval dispersal that does occur and limited advantages for larvae to disperse further than a few 10s of metres.
期刊介绍:
It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.