Yanghua Fan , Shuaiwei Guo , Chuming Tao , Hua Fang , Anna Mou , Ming Feng , Zhen Wu
{"title":"无创放射组学方法预测催乳素瘤患者对多巴胺激动剂的治疗反应:一项多中心研究。","authors":"Yanghua Fan , Shuaiwei Guo , Chuming Tao , Hua Fang , Anna Mou , Ming Feng , Zhen Wu","doi":"10.1016/j.acra.2024.09.023","DOIUrl":null,"url":null,"abstract":"<div><h3>Rationale and Objectives</h3><div>The first-line treatment for prolactinoma is drug therapy with dopamine agonists (DAs). However, some patients with resistance to DA treatment should prioritize surgical treatment. Therefore, it is crucial to accurately identify the drug treatment response of prolactinoma before treatment. The present study was performed to determine the DA treatment response of prolactinoma using a clinical radiomic model that incorporated radiomic and clinical features before treatment.</div></div><div><h3>Materials and Methods</h3><div>In total, 255 patients diagnosed with prolactinoma were retrospectively divided to training and validation sets. An elastic net algorithm was used to screen the radiomic features, and a fusion radiomic model was established. A clinical radiomic model was then constructed to integrate the fusion radiomic model and the most important clinical features through multivariate logistic regression analysis for individual prediction. The calibration, discrimination, and clinical applicability of the established models were evaluated. 60 patients with prolactinoma from other centers were used to validate the performance of the constructed model.</div></div><div><h3>Results</h3><div>The fusion radiomic model was constructed from three significant radiomic features, and the area under the curve in the training set and validation set was 0.930 and 0.910, respectively. The clinical radiomic model was constructed using the radiomic model and three clinical features. The model exhibited good recognition and calibration abilities as evidenced by its area under the curve of 0.96, 0.92, and 0.92 in the training, validation, and external multicenter validation set, respectively. Analysis of the decision curve showed that the fusion radiomic model and clinical radiomic model had good clinical application value for DA treatment response prediction in patients with prolactinoma.</div></div><div><h3>Conclusion</h3><div>Our clinical radiomic model demonstrated high sensitivity and excellent performance in predicting DA treatment response in prolactinoma. This model holds promise for the noninvasive development of individualized diagnosis and treatment strategies for patients with prolactinoma.</div></div>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":"32 2","pages":"Pages 612-623"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noninvasive Radiomics Approach Predicts Dopamine Agonists Treatment Response in Patients with Prolactinoma: A Multicenter Study\",\"authors\":\"Yanghua Fan , Shuaiwei Guo , Chuming Tao , Hua Fang , Anna Mou , Ming Feng , Zhen Wu\",\"doi\":\"10.1016/j.acra.2024.09.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Rationale and Objectives</h3><div>The first-line treatment for prolactinoma is drug therapy with dopamine agonists (DAs). However, some patients with resistance to DA treatment should prioritize surgical treatment. Therefore, it is crucial to accurately identify the drug treatment response of prolactinoma before treatment. The present study was performed to determine the DA treatment response of prolactinoma using a clinical radiomic model that incorporated radiomic and clinical features before treatment.</div></div><div><h3>Materials and Methods</h3><div>In total, 255 patients diagnosed with prolactinoma were retrospectively divided to training and validation sets. An elastic net algorithm was used to screen the radiomic features, and a fusion radiomic model was established. A clinical radiomic model was then constructed to integrate the fusion radiomic model and the most important clinical features through multivariate logistic regression analysis for individual prediction. The calibration, discrimination, and clinical applicability of the established models were evaluated. 60 patients with prolactinoma from other centers were used to validate the performance of the constructed model.</div></div><div><h3>Results</h3><div>The fusion radiomic model was constructed from three significant radiomic features, and the area under the curve in the training set and validation set was 0.930 and 0.910, respectively. The clinical radiomic model was constructed using the radiomic model and three clinical features. The model exhibited good recognition and calibration abilities as evidenced by its area under the curve of 0.96, 0.92, and 0.92 in the training, validation, and external multicenter validation set, respectively. Analysis of the decision curve showed that the fusion radiomic model and clinical radiomic model had good clinical application value for DA treatment response prediction in patients with prolactinoma.</div></div><div><h3>Conclusion</h3><div>Our clinical radiomic model demonstrated high sensitivity and excellent performance in predicting DA treatment response in prolactinoma. This model holds promise for the noninvasive development of individualized diagnosis and treatment strategies for patients with prolactinoma.</div></div>\",\"PeriodicalId\":50928,\"journal\":{\"name\":\"Academic Radiology\",\"volume\":\"32 2\",\"pages\":\"Pages 612-623\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107663322400672X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107663322400672X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Noninvasive Radiomics Approach Predicts Dopamine Agonists Treatment Response in Patients with Prolactinoma: A Multicenter Study
Rationale and Objectives
The first-line treatment for prolactinoma is drug therapy with dopamine agonists (DAs). However, some patients with resistance to DA treatment should prioritize surgical treatment. Therefore, it is crucial to accurately identify the drug treatment response of prolactinoma before treatment. The present study was performed to determine the DA treatment response of prolactinoma using a clinical radiomic model that incorporated radiomic and clinical features before treatment.
Materials and Methods
In total, 255 patients diagnosed with prolactinoma were retrospectively divided to training and validation sets. An elastic net algorithm was used to screen the radiomic features, and a fusion radiomic model was established. A clinical radiomic model was then constructed to integrate the fusion radiomic model and the most important clinical features through multivariate logistic regression analysis for individual prediction. The calibration, discrimination, and clinical applicability of the established models were evaluated. 60 patients with prolactinoma from other centers were used to validate the performance of the constructed model.
Results
The fusion radiomic model was constructed from three significant radiomic features, and the area under the curve in the training set and validation set was 0.930 and 0.910, respectively. The clinical radiomic model was constructed using the radiomic model and three clinical features. The model exhibited good recognition and calibration abilities as evidenced by its area under the curve of 0.96, 0.92, and 0.92 in the training, validation, and external multicenter validation set, respectively. Analysis of the decision curve showed that the fusion radiomic model and clinical radiomic model had good clinical application value for DA treatment response prediction in patients with prolactinoma.
Conclusion
Our clinical radiomic model demonstrated high sensitivity and excellent performance in predicting DA treatment response in prolactinoma. This model holds promise for the noninvasive development of individualized diagnosis and treatment strategies for patients with prolactinoma.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.