Sávio Torres de Farias , Ana Karoline Nunes-Alves , Marco José
{"title":"从 RNA 到 DNA:从依赖 RNA 的原始 RNA 聚合酶到逆转录酶的出现。","authors":"Sávio Torres de Farias , Ana Karoline Nunes-Alves , Marco José","doi":"10.1016/j.biosystems.2024.105345","DOIUrl":null,"url":null,"abstract":"<div><div>The transition from RNA as the informational molecule of primordial biological systems to the DNA genomes of modern organisms represents one of the greatest evolutionary transitions in the history of life. One way to understand this transition is to comprehend the origin of the enzymes responsible for the metabolism of nucleic acid polymers. In the present work, we reconstructed the ancestral sequence of RNA-dependent DNA polymerase (RdDp) and modeled its structure. The data demonstrate that, in terms of primary sequence, the ancestral sequences exhibit characteristic elements of RdDp; however, structurally, they are more similar to RNA-dependent RNA polymerase (RdRp). The presented data suggest that RdDp may have originated through modifications and neofunctionalization from an RdRp-like ancestor.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From RNA to DNA: Emergence of reverse transcriptases from an ancestral RNA-dependent RNA polymerase\",\"authors\":\"Sávio Torres de Farias , Ana Karoline Nunes-Alves , Marco José\",\"doi\":\"10.1016/j.biosystems.2024.105345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The transition from RNA as the informational molecule of primordial biological systems to the DNA genomes of modern organisms represents one of the greatest evolutionary transitions in the history of life. One way to understand this transition is to comprehend the origin of the enzymes responsible for the metabolism of nucleic acid polymers. In the present work, we reconstructed the ancestral sequence of RNA-dependent DNA polymerase (RdDp) and modeled its structure. The data demonstrate that, in terms of primary sequence, the ancestral sequences exhibit characteristic elements of RdDp; however, structurally, they are more similar to RNA-dependent RNA polymerase (RdRp). The presented data suggest that RdDp may have originated through modifications and neofunctionalization from an RdRp-like ancestor.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264724002302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724002302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
从原始生物系统的信息分子 RNA 到现代生物的 DNA 基因组,是生命史上最伟大的进化转变之一。理解这一转变的方法之一是了解负责核酸聚合物新陈代谢的酶的起源。在本研究中,我们重建了依赖 RNA 的 DNA 聚合酶(RdDp)的祖先序列,并对其结构进行了建模。数据表明,在主序列方面,祖先序列表现出 RdDp 的特征元素;但在结构上,它们与 RNA 依赖性 RNA 聚合酶(RdRp)更为相似。所提供的数据表明,RdDp 可能是通过修改和新功能化从类似 RdRp 的祖先起源的。
From RNA to DNA: Emergence of reverse transcriptases from an ancestral RNA-dependent RNA polymerase
The transition from RNA as the informational molecule of primordial biological systems to the DNA genomes of modern organisms represents one of the greatest evolutionary transitions in the history of life. One way to understand this transition is to comprehend the origin of the enzymes responsible for the metabolism of nucleic acid polymers. In the present work, we reconstructed the ancestral sequence of RNA-dependent DNA polymerase (RdDp) and modeled its structure. The data demonstrate that, in terms of primary sequence, the ancestral sequences exhibit characteristic elements of RdDp; however, structurally, they are more similar to RNA-dependent RNA polymerase (RdRp). The presented data suggest that RdDp may have originated through modifications and neofunctionalization from an RdRp-like ancestor.