基于易感-传染-易感(SIS)模型的流行病传播控制措施。

IF 2 4区 生物学 Q2 BIOLOGY Biosystems Pub Date : 2024-09-25 DOI:10.1016/j.biosystems.2024.105341
Jin-Xuan Yang, Haiyan Wang, Xin Li, Ying Tan, Yongjuan Ma, Min Zeng
{"title":"基于易感-传染-易感(SIS)模型的流行病传播控制措施。","authors":"Jin-Xuan Yang,&nbsp;Haiyan Wang,&nbsp;Xin Li,&nbsp;Ying Tan,&nbsp;Yongjuan Ma,&nbsp;Min Zeng","doi":"10.1016/j.biosystems.2024.105341","DOIUrl":null,"url":null,"abstract":"<div><div>When an epidemic occurs in a network, finding the important links and cutting them off is an effective measure for preventing the spread of the epidemic. Traditional methods that remove important links easily lead to a disconnected network, inevitably incurring high costs arising from quarantining individuals or communities in a real-world network. In this study, we combine the clustering coefficient and the eigenvector to identify the important links using the susceptible–infectious–susceptible (SIS) model. The results show that our approach can improve the epidemic threshold while maintaining the connectivity of the network to control the spread of the epidemic. Experiments on multiple real-world and synthetic networks of varying sizes, demonstrate the effectiveness and scalability of our approach.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"246 ","pages":"Article 105341"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A control measure for epidemic spread based on the susceptible–infectious–susceptible (SIS) model\",\"authors\":\"Jin-Xuan Yang,&nbsp;Haiyan Wang,&nbsp;Xin Li,&nbsp;Ying Tan,&nbsp;Yongjuan Ma,&nbsp;Min Zeng\",\"doi\":\"10.1016/j.biosystems.2024.105341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When an epidemic occurs in a network, finding the important links and cutting them off is an effective measure for preventing the spread of the epidemic. Traditional methods that remove important links easily lead to a disconnected network, inevitably incurring high costs arising from quarantining individuals or communities in a real-world network. In this study, we combine the clustering coefficient and the eigenvector to identify the important links using the susceptible–infectious–susceptible (SIS) model. The results show that our approach can improve the epidemic threshold while maintaining the connectivity of the network to control the spread of the epidemic. Experiments on multiple real-world and synthetic networks of varying sizes, demonstrate the effectiveness and scalability of our approach.</div></div>\",\"PeriodicalId\":50730,\"journal\":{\"name\":\"Biosystems\",\"volume\":\"246 \",\"pages\":\"Article 105341\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264724002260\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724002260","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

当网络中发生流行病时,找到并切断重要链接是防止流行病传播的有效措施。传统的去除重要链接的方法容易导致网络断开,在现实世界的网络中,隔离个体或群体不可避免地会产生高昂的成本。在本研究中,我们结合聚类系数和特征向量,利用易感-传染-易感(SIS)模型来识别重要链接。结果表明,我们的方法可以提高流行病阈值,同时保持网络的连通性,从而控制流行病的传播。在多个真实世界和不同规模的合成网络上进行的实验证明了我们方法的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A control measure for epidemic spread based on the susceptible–infectious–susceptible (SIS) model
When an epidemic occurs in a network, finding the important links and cutting them off is an effective measure for preventing the spread of the epidemic. Traditional methods that remove important links easily lead to a disconnected network, inevitably incurring high costs arising from quarantining individuals or communities in a real-world network. In this study, we combine the clustering coefficient and the eigenvector to identify the important links using the susceptible–infectious–susceptible (SIS) model. The results show that our approach can improve the epidemic threshold while maintaining the connectivity of the network to control the spread of the epidemic. Experiments on multiple real-world and synthetic networks of varying sizes, demonstrate the effectiveness and scalability of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosystems
Biosystems 生物-生物学
CiteScore
3.70
自引率
18.80%
发文量
129
审稿时长
34 days
期刊介绍: BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.
期刊最新文献
A mechanistic approach to optimize combination antibiotic therapy Stages and causes of the evolution of language and consciousness: A theoretical reconstruction Neural networks through the lens of evolutionary dynamics Cholesterol-ester prevents lipoprotein core from solidifying: Molecular dynamics simulation On the infodynamics of ramifications in constructal design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1