支持无障碍语音的社区支持共享基础设施。

IF 2.2 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY Journal of Speech Language and Hearing Research Pub Date : 2024-11-07 Epub Date: 2024-09-26 DOI:10.1044/2024_JSLHR-24-00122
Mark Hasegawa-Johnson, Xiuwen Zheng, Heejin Kim, Clarion Mendes, Meg Dickinson, Erik Hege, Chris Zwilling, Marie Moore Channell, Laura Mattie, Heather Hodges, Lorraine Ramig, Mary Bellard, Mike Shebanek, Leda Sarι, Kaustubh Kalgaonkar, David Frerichs, Jeffrey P Bigham, Leah Findlater, Colin Lea, Sarah Herrlinger, Peter Korn, Shadi Abou-Zahra, Rus Heywood, Katrin Tomanek, Bob MacDonald
{"title":"支持无障碍语音的社区支持共享基础设施。","authors":"Mark Hasegawa-Johnson, Xiuwen Zheng, Heejin Kim, Clarion Mendes, Meg Dickinson, Erik Hege, Chris Zwilling, Marie Moore Channell, Laura Mattie, Heather Hodges, Lorraine Ramig, Mary Bellard, Mike Shebanek, Leda Sarι, Kaustubh Kalgaonkar, David Frerichs, Jeffrey P Bigham, Leah Findlater, Colin Lea, Sarah Herrlinger, Peter Korn, Shadi Abou-Zahra, Rus Heywood, Katrin Tomanek, Bob MacDonald","doi":"10.1044/2024_JSLHR-24-00122","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The Speech Accessibility Project (SAP) intends to facilitate research and development in automatic speech recognition (ASR) and other machine learning tasks for people with speech disabilities. The purpose of this article is to introduce this project as a resource for researchers, including baseline analysis of the first released data package.</p><p><strong>Method: </strong>The project aims to facilitate ASR research by collecting, curating, and distributing transcribed U.S. English speech from people with speech and/or language disabilities. Participants record speech from their place of residence by connecting their personal computer, cell phone, and assistive devices, if needed, to the SAP web portal. All samples are manually transcribed, and 30 per participant are annotated using differential diagnostic pattern dimensions. For purposes of ASR experiments, the participants have been randomly assigned to a training set, a development set for controlled testing of a trained ASR, and a test set to evaluate ASR error rate.</p><p><strong>Results: </strong>The SAP 2023-10-05 Data Package contains the speech of 211 people with dysarthria as a correlate of Parkinson's disease, and the associated test set contains 42 additional speakers. A baseline ASR, with a word error rate of 3.4% for typical speakers, transcribes test speech with a word error rate of 36.3%. Fine-tuning reduces the word error rate to 23.7%.</p><p><strong>Conclusions: </strong>Preliminary findings suggest that a large corpus of dysarthric and dysphonic speech has the potential to significantly improve speech technology for people with disabilities. By providing these data to researchers, the SAP intends to significantly accelerate research into accessible speech technology.</p><p><strong>Supplemental material: </strong>https://doi.org/10.23641/asha.27078079.</p>","PeriodicalId":51254,"journal":{"name":"Journal of Speech Language and Hearing Research","volume":" ","pages":"4162-4175"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Community-Supported Shared Infrastructure in Support of Speech Accessibility.\",\"authors\":\"Mark Hasegawa-Johnson, Xiuwen Zheng, Heejin Kim, Clarion Mendes, Meg Dickinson, Erik Hege, Chris Zwilling, Marie Moore Channell, Laura Mattie, Heather Hodges, Lorraine Ramig, Mary Bellard, Mike Shebanek, Leda Sarι, Kaustubh Kalgaonkar, David Frerichs, Jeffrey P Bigham, Leah Findlater, Colin Lea, Sarah Herrlinger, Peter Korn, Shadi Abou-Zahra, Rus Heywood, Katrin Tomanek, Bob MacDonald\",\"doi\":\"10.1044/2024_JSLHR-24-00122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The Speech Accessibility Project (SAP) intends to facilitate research and development in automatic speech recognition (ASR) and other machine learning tasks for people with speech disabilities. The purpose of this article is to introduce this project as a resource for researchers, including baseline analysis of the first released data package.</p><p><strong>Method: </strong>The project aims to facilitate ASR research by collecting, curating, and distributing transcribed U.S. English speech from people with speech and/or language disabilities. Participants record speech from their place of residence by connecting their personal computer, cell phone, and assistive devices, if needed, to the SAP web portal. All samples are manually transcribed, and 30 per participant are annotated using differential diagnostic pattern dimensions. For purposes of ASR experiments, the participants have been randomly assigned to a training set, a development set for controlled testing of a trained ASR, and a test set to evaluate ASR error rate.</p><p><strong>Results: </strong>The SAP 2023-10-05 Data Package contains the speech of 211 people with dysarthria as a correlate of Parkinson's disease, and the associated test set contains 42 additional speakers. A baseline ASR, with a word error rate of 3.4% for typical speakers, transcribes test speech with a word error rate of 36.3%. Fine-tuning reduces the word error rate to 23.7%.</p><p><strong>Conclusions: </strong>Preliminary findings suggest that a large corpus of dysarthric and dysphonic speech has the potential to significantly improve speech technology for people with disabilities. By providing these data to researchers, the SAP intends to significantly accelerate research into accessible speech technology.</p><p><strong>Supplemental material: </strong>https://doi.org/10.23641/asha.27078079.</p>\",\"PeriodicalId\":51254,\"journal\":{\"name\":\"Journal of Speech Language and Hearing Research\",\"volume\":\" \",\"pages\":\"4162-4175\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Speech Language and Hearing Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1044/2024_JSLHR-24-00122\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Speech Language and Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1044/2024_JSLHR-24-00122","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:语音无障碍项目(SAP)旨在促进自动语音识别(ASR)和其他机器学习任务的研究和开发,为语音残疾人士提供便利。本文旨在介绍该项目,将其作为研究人员的资源,包括对首次发布的数据包进行基线分析:该项目旨在通过收集、整理和发布语音和/或语言残障人士转录的美国英语语音来促进 ASR 研究。参与者将个人电脑、手机和辅助设备(如需要)连接到 SAP 门户网站,在居住地录制语音。所有样本均由人工转录,并使用差异诊断模式维度对每位参与者的 30 个样本进行注释。为了进行 ASR 实验,参与者被随机分配到一个训练集、一个用于对训练过的 ASR 进行控制测试的开发集和一个用于评估 ASR 错误率的测试集:SAP 2023-10-05 数据包包含 211 名与帕金森病相关的构音障碍患者的语音,相关测试集包含另外 42 名发言者的语音。基线 ASR 对典型说话者的词错误率为 3.4%,而转录测试语音的词错误率为 36.3%。微调后,词错误率降低到 23.7%:初步研究结果表明,庞大的发音障碍和发音困难语音语料库有可能极大地改进面向残疾人的语音技术。通过向研究人员提供这些数据,SAP 打算大大加快无障碍语音技术的研究。补充材料:https://doi.org/10.23641/asha.27078079。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Community-Supported Shared Infrastructure in Support of Speech Accessibility.

Purpose: The Speech Accessibility Project (SAP) intends to facilitate research and development in automatic speech recognition (ASR) and other machine learning tasks for people with speech disabilities. The purpose of this article is to introduce this project as a resource for researchers, including baseline analysis of the first released data package.

Method: The project aims to facilitate ASR research by collecting, curating, and distributing transcribed U.S. English speech from people with speech and/or language disabilities. Participants record speech from their place of residence by connecting their personal computer, cell phone, and assistive devices, if needed, to the SAP web portal. All samples are manually transcribed, and 30 per participant are annotated using differential diagnostic pattern dimensions. For purposes of ASR experiments, the participants have been randomly assigned to a training set, a development set for controlled testing of a trained ASR, and a test set to evaluate ASR error rate.

Results: The SAP 2023-10-05 Data Package contains the speech of 211 people with dysarthria as a correlate of Parkinson's disease, and the associated test set contains 42 additional speakers. A baseline ASR, with a word error rate of 3.4% for typical speakers, transcribes test speech with a word error rate of 36.3%. Fine-tuning reduces the word error rate to 23.7%.

Conclusions: Preliminary findings suggest that a large corpus of dysarthric and dysphonic speech has the potential to significantly improve speech technology for people with disabilities. By providing these data to researchers, the SAP intends to significantly accelerate research into accessible speech technology.

Supplemental material: https://doi.org/10.23641/asha.27078079.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Speech Language and Hearing Research
Journal of Speech Language and Hearing Research AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY-REHABILITATION
CiteScore
4.10
自引率
19.20%
发文量
538
审稿时长
4-8 weeks
期刊介绍: Mission: JSLHR publishes peer-reviewed research and other scholarly articles on the normal and disordered processes in speech, language, hearing, and related areas such as cognition, oral-motor function, and swallowing. The journal is an international outlet for both basic research on communication processes and clinical research pertaining to screening, diagnosis, and management of communication disorders as well as the etiologies and characteristics of these disorders. JSLHR seeks to advance evidence-based practice by disseminating the results of new studies as well as providing a forum for critical reviews and meta-analyses of previously published work. Scope: The broad field of communication sciences and disorders, including speech production and perception; anatomy and physiology of speech and voice; genetics, biomechanics, and other basic sciences pertaining to human communication; mastication and swallowing; speech disorders; voice disorders; development of speech, language, or hearing in children; normal language processes; language disorders; disorders of hearing and balance; psychoacoustics; and anatomy and physiology of hearing.
期刊最新文献
Accurately Identifying Language Disorder in School-Age Children Using Dynamic Assessment of Narrative Language. Microbiome and Communication Disorders: A Tutorial for Clinicians. Race Identification in American English. A Methodological Review of Stimuli Used for Classroom Speech-in-Noise Tests. Cochlear Implant Sound Quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1