在 SafeHeart 植入式心律转复除颤器人群中长期坚持使用可穿戴设备进行持续行为活动测量。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS European heart journal. Digital health Pub Date : 2024-08-01 eCollection Date: 2024-09-01 DOI:10.1093/ehjdh/ztae055
Diana My Frodi, Maarten Z H Kolk, Joss Langford, Reinoud Knops, Hanno L Tan, Tariq Osman Andersen, Peter Karl Jacobsen, Niels Risum, Jesper Hastrup Svendsen, Fleur V Y Tjong, Søren Zöga Diederichsen
{"title":"在 SafeHeart 植入式心律转复除颤器人群中长期坚持使用可穿戴设备进行持续行为活动测量。","authors":"Diana My Frodi, Maarten Z H Kolk, Joss Langford, Reinoud Knops, Hanno L Tan, Tariq Osman Andersen, Peter Karl Jacobsen, Niels Risum, Jesper Hastrup Svendsen, Fleur V Y Tjong, Søren Zöga Diederichsen","doi":"10.1093/ehjdh/ztae055","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Wearable health technologies are increasingly popular. Yet, wearable monitoring only works when devices are worn as intended, and adherence reporting lacks standardization. In this study, we aimed to explore the long-term adherence to a wrist-worn activity tracker in the prospective SafeHeart study and identify patient characteristics associated with adherence.</p><p><strong>Methods and results: </strong>This study enrolled 303 participants, instructed to wear a wrist-worn accelerometer day and night for 6 months. Long-term adherence was defined as valid days (≥22 h of wear time) divided by expected days, and daily adherence as mean hours of wear time per 24 h period. Optimal, moderate, and low long-term and daily adherence groups were defined as long-term adherence above or below 95 and 75% and daily adherence above or below 90 and 75%. Regression models were used to identify patient characteristics associated with long-term adherence. In total, 296 participants [median age 64 years; interquartile range (IQR) 57-72; 19% female] were found eligible, yielding 44 003 days for analysis. The median long-term adherence was 88.2% (IQR 74.6-96.5%). A total of 83 (28%), 127 (42.9%), and 86 (29.1%) participants had optimal, moderate, and low long-term adherence, and 163 (55.1%), 87 (29.4%), and 46 (15.5%) had optimal, moderate, and low daily adherence, respectively. Age and smoking habits differed significantly between adherence levels, and increasing changeover intervals improved the degree of long-term adherence.</p><p><strong>Conclusion: </strong>Long-term adherence to a wearable activity tracker was 88.2% over a 6-month period. Older age and longer changeover interval were positively associated with long-term adherence. This serves as a benchmark for future studies that rely on wearable devices.</p><p><strong>Trial registration number: </strong>The National Trial Registration number: NL9218 (https://onderzoekmetmensen.nl/).</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"5 5","pages":"622-632"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417489/pdf/","citationCount":"0","resultStr":"{\"title\":\"Long-term adherence to a wearable for continuous behavioural activity measuring in the SafeHeart implantable cardioverter defibrillator population.\",\"authors\":\"Diana My Frodi, Maarten Z H Kolk, Joss Langford, Reinoud Knops, Hanno L Tan, Tariq Osman Andersen, Peter Karl Jacobsen, Niels Risum, Jesper Hastrup Svendsen, Fleur V Y Tjong, Søren Zöga Diederichsen\",\"doi\":\"10.1093/ehjdh/ztae055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Wearable health technologies are increasingly popular. Yet, wearable monitoring only works when devices are worn as intended, and adherence reporting lacks standardization. In this study, we aimed to explore the long-term adherence to a wrist-worn activity tracker in the prospective SafeHeart study and identify patient characteristics associated with adherence.</p><p><strong>Methods and results: </strong>This study enrolled 303 participants, instructed to wear a wrist-worn accelerometer day and night for 6 months. Long-term adherence was defined as valid days (≥22 h of wear time) divided by expected days, and daily adherence as mean hours of wear time per 24 h period. Optimal, moderate, and low long-term and daily adherence groups were defined as long-term adherence above or below 95 and 75% and daily adherence above or below 90 and 75%. Regression models were used to identify patient characteristics associated with long-term adherence. In total, 296 participants [median age 64 years; interquartile range (IQR) 57-72; 19% female] were found eligible, yielding 44 003 days for analysis. The median long-term adherence was 88.2% (IQR 74.6-96.5%). A total of 83 (28%), 127 (42.9%), and 86 (29.1%) participants had optimal, moderate, and low long-term adherence, and 163 (55.1%), 87 (29.4%), and 46 (15.5%) had optimal, moderate, and low daily adherence, respectively. Age and smoking habits differed significantly between adherence levels, and increasing changeover intervals improved the degree of long-term adherence.</p><p><strong>Conclusion: </strong>Long-term adherence to a wearable activity tracker was 88.2% over a 6-month period. Older age and longer changeover interval were positively associated with long-term adherence. This serves as a benchmark for future studies that rely on wearable devices.</p><p><strong>Trial registration number: </strong>The National Trial Registration number: NL9218 (https://onderzoekmetmensen.nl/).</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"5 5\",\"pages\":\"622-632\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417489/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztae055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:可穿戴健康技术越来越受欢迎。然而,可穿戴式监测只有在设备按预期佩戴的情况下才能发挥作用,而且依从性报告缺乏标准化。在这项研究中,我们旨在探讨前瞻性安全心脏研究中佩戴腕戴式活动追踪器的长期依从性,并确定与依从性相关的患者特征:这项研究招募了 303 名参与者,要求他们在 6 个月内日夜佩戴腕戴式加速度计。长期坚持的定义是有效天数(佩戴时间≥22小时)除以预期天数,每日坚持的定义是每24小时佩戴时间的平均小时数。最佳、中度和低度长期坚持率和每日坚持率组别分别定义为长期坚持率高于或低于 95% 和 75%,以及每日坚持率高于或低于 90% 和 75%。回归模型用于确定与长期依从性相关的患者特征。共有 296 名参与者[中位年龄 64 岁;四分位数间距 (IQR) 57-72;19% 为女性]符合条件,共 44 003 天可用于分析。长期坚持治疗的中位数为 88.2%(IQR 74.6-96.5%)。共有 83 人(28%)、127 人(42.9%)和 86 人(29.1%)的长期依从性达到最佳、中等和较低水平,163 人(55.1%)、87 人(29.4%)和 46 人(15.5%)的日常依从性达到最佳、中等和较低水平。年龄和吸烟习惯在不同的依从性水平之间存在显著差异,增加转换间隔可提高长期依从性:结论:在6个月的时间里,可穿戴活动追踪器的长期依从性为88.2%。年龄越大、更换间隔时间越长与长期坚持率呈正相关。这为今后依靠可穿戴设备进行的研究提供了一个基准:国家试验注册号:NL9218 ()NL9218 (https://onderzoekmetmensen.nl/)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long-term adherence to a wearable for continuous behavioural activity measuring in the SafeHeart implantable cardioverter defibrillator population.

Aims: Wearable health technologies are increasingly popular. Yet, wearable monitoring only works when devices are worn as intended, and adherence reporting lacks standardization. In this study, we aimed to explore the long-term adherence to a wrist-worn activity tracker in the prospective SafeHeart study and identify patient characteristics associated with adherence.

Methods and results: This study enrolled 303 participants, instructed to wear a wrist-worn accelerometer day and night for 6 months. Long-term adherence was defined as valid days (≥22 h of wear time) divided by expected days, and daily adherence as mean hours of wear time per 24 h period. Optimal, moderate, and low long-term and daily adherence groups were defined as long-term adherence above or below 95 and 75% and daily adherence above or below 90 and 75%. Regression models were used to identify patient characteristics associated with long-term adherence. In total, 296 participants [median age 64 years; interquartile range (IQR) 57-72; 19% female] were found eligible, yielding 44 003 days for analysis. The median long-term adherence was 88.2% (IQR 74.6-96.5%). A total of 83 (28%), 127 (42.9%), and 86 (29.1%) participants had optimal, moderate, and low long-term adherence, and 163 (55.1%), 87 (29.4%), and 46 (15.5%) had optimal, moderate, and low daily adherence, respectively. Age and smoking habits differed significantly between adherence levels, and increasing changeover intervals improved the degree of long-term adherence.

Conclusion: Long-term adherence to a wearable activity tracker was 88.2% over a 6-month period. Older age and longer changeover interval were positively associated with long-term adherence. This serves as a benchmark for future studies that rely on wearable devices.

Trial registration number: The National Trial Registration number: NL9218 (https://onderzoekmetmensen.nl/).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
期刊最新文献
Introducing online multi-language video animations to support patients' understanding of cardiac procedures in a high-volume tertiary centre. Deep-learning-driven optical coherence tomography analysis for cardiovascular outcome prediction in patients with acute coronary syndrome. Validation of machine learning-based risk stratification scores for patients with acute coronary syndrome treated with percutaneous coronary intervention. On the detection of acute coronary occlusion with the miniECG. Cardiac anatomic digital twins: findings from a single national centre.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1