Zhenyong Du, Gregory Gelembiuk, Wynne Moss, Andrew Tritt, Carol Eunmi Lee
{"title":"桡足类 Eurytemora carolleeae 的基因组结构--E. affinis 种群中具有高度入侵性的大西洋支系。","authors":"Zhenyong Du, Gregory Gelembiuk, Wynne Moss, Andrew Tritt, Carol Eunmi Lee","doi":"10.1093/gpbjnl/qzae066","DOIUrl":null,"url":null,"abstract":"<p><p>Copepods are among the most abundant organisms on the planet and play critical functions in aquatic ecosystems. Among copepods, populations of the Eurytemora affinis species complex are numerically dominant in many coastal habitats and are food sources for major fisheries. Intriguingly, certain populations possess the unusual capacity to invade novel salinities on rapid time scales. Despite their ecological importance, high-quality genomic resources have been absent for calanoid copepods, limiting our ability to comprehensively dissect the genome architecture underlying the highly invasive and adaptive capacity of certain populations. Here, we presented the first chromosome-level genome of a calanoid copepod, from the Atlantic clade (Eurytemora carolleeae) of the E. affinis species complex. This genome was assembled using high-coverage long-read and high-throughput chromosome conformation capture sequences of an inbred line, generated through 30 generations of full-sib mating. This genome, consisting of 529.3 megabase (Mb) (contig N50 = 4.2 Mb, scaffold N50 = 140.6 Mb), was anchored onto four chromosomes. Genome annotation predicted 20,262 protein-coding genes, of which ion transporter gene families were substantially expanded based on comparative analyses of 12 additional arthropod genomes. Also, we found genome-wide signatures of historical gene body methylation of the ion transporter genes and the significant clustering of these genes on each chromosome. This genome represents one of the most contiguous copepod genomes to date and among the highest quality marine invertebrate genomes. As such, this genome provides an invaluable resource to help yield fundamental insights into the ability of this copepod to adapt to rapidly changing environments.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Genome Architecture of the Copepod Eurytemora carolleeae, the Highly Invasive Atlantic Clade of the E. affinis Species Complex.\",\"authors\":\"Zhenyong Du, Gregory Gelembiuk, Wynne Moss, Andrew Tritt, Carol Eunmi Lee\",\"doi\":\"10.1093/gpbjnl/qzae066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Copepods are among the most abundant organisms on the planet and play critical functions in aquatic ecosystems. Among copepods, populations of the Eurytemora affinis species complex are numerically dominant in many coastal habitats and are food sources for major fisheries. Intriguingly, certain populations possess the unusual capacity to invade novel salinities on rapid time scales. Despite their ecological importance, high-quality genomic resources have been absent for calanoid copepods, limiting our ability to comprehensively dissect the genome architecture underlying the highly invasive and adaptive capacity of certain populations. Here, we presented the first chromosome-level genome of a calanoid copepod, from the Atlantic clade (Eurytemora carolleeae) of the E. affinis species complex. This genome was assembled using high-coverage long-read and high-throughput chromosome conformation capture sequences of an inbred line, generated through 30 generations of full-sib mating. This genome, consisting of 529.3 megabase (Mb) (contig N50 = 4.2 Mb, scaffold N50 = 140.6 Mb), was anchored onto four chromosomes. Genome annotation predicted 20,262 protein-coding genes, of which ion transporter gene families were substantially expanded based on comparative analyses of 12 additional arthropod genomes. Also, we found genome-wide signatures of historical gene body methylation of the ion transporter genes and the significant clustering of these genes on each chromosome. This genome represents one of the most contiguous copepod genomes to date and among the highest quality marine invertebrate genomes. As such, this genome provides an invaluable resource to help yield fundamental insights into the ability of this copepod to adapt to rapidly changing environments.</p>\",\"PeriodicalId\":94020,\"journal\":{\"name\":\"Genomics, proteomics & bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, proteomics & bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzae066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Genome Architecture of the Copepod Eurytemora carolleeae, the Highly Invasive Atlantic Clade of the E. affinis Species Complex.
Copepods are among the most abundant organisms on the planet and play critical functions in aquatic ecosystems. Among copepods, populations of the Eurytemora affinis species complex are numerically dominant in many coastal habitats and are food sources for major fisheries. Intriguingly, certain populations possess the unusual capacity to invade novel salinities on rapid time scales. Despite their ecological importance, high-quality genomic resources have been absent for calanoid copepods, limiting our ability to comprehensively dissect the genome architecture underlying the highly invasive and adaptive capacity of certain populations. Here, we presented the first chromosome-level genome of a calanoid copepod, from the Atlantic clade (Eurytemora carolleeae) of the E. affinis species complex. This genome was assembled using high-coverage long-read and high-throughput chromosome conformation capture sequences of an inbred line, generated through 30 generations of full-sib mating. This genome, consisting of 529.3 megabase (Mb) (contig N50 = 4.2 Mb, scaffold N50 = 140.6 Mb), was anchored onto four chromosomes. Genome annotation predicted 20,262 protein-coding genes, of which ion transporter gene families were substantially expanded based on comparative analyses of 12 additional arthropod genomes. Also, we found genome-wide signatures of historical gene body methylation of the ion transporter genes and the significant clustering of these genes on each chromosome. This genome represents one of the most contiguous copepod genomes to date and among the highest quality marine invertebrate genomes. As such, this genome provides an invaluable resource to help yield fundamental insights into the ability of this copepod to adapt to rapidly changing environments.