Arnau Dillen, Mohsen Omidi, Fakhreddine Ghaffari, Bram Vanderborght, Bart Roelands, Olivier Romain, Ann Nowé, Kevin De Pauw
{"title":"将增强现实技术和运动图像脑机接口与眼动跟踪技术相结合的共享机器人控制系统。","authors":"Arnau Dillen, Mohsen Omidi, Fakhreddine Ghaffari, Bram Vanderborght, Bart Roelands, Olivier Romain, Ann Nowé, Kevin De Pauw","doi":"10.1088/1741-2552/ad7f8d","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective</b>: Brain-computer interface (BCI) control systems monitor neural activity to detect the user's intentions, enabling device control through mental imagery. Despite their potential, decoding neural activity in real-world conditions poses significant challenges, making BCIs currently impractical compared to traditional interaction methods. This study introduces a novel motor imagery (MI) BCI control strategy for operating a physically assistive robotic arm, addressing the difficulties of MI decoding from electroencephalogram (EEG) signals, which are inherently non-stationary and vary across individuals.
<b>Approach</b>: A proof-of-concept BCI control system was developed using commercially available hardware, integrating MI with eye tracking in an augmented reality (AR) user interface to facilitate a shared control approach. This system proposes actions based on the user's gaze, enabling selection through imagined movements. A user study was conducted to evaluate the system's usability, focusing on its effectiveness and efficiency.
<b>Main results:</b>Participants performed tasks that simulated everyday activities with the robotic arm, demonstrating the shared control system's feasibility and practicality in real-world scenarios. Despite low online decoding performance (mean accuracy: 0.52 9, F1: 0.29, Cohen's Kappa: 0.12), participants achieved a mean success rate of 0.83 in the final phase of the user study when given 15 minutes to complete the evaluation tasks. The success rate dropped below 0.5 when a 5-minute cutoff time was selected.
<b>Significance</b>: These results indicate that integrating AR and eye tracking can significantly enhance the usability of BCI systems, despite the complexities of MI-EEG decoding. While efficiency is still low, the effectiveness of our approach was verified. This suggests that BCI systems have the potential to become a viable interaction modality for everyday applications
in the future.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A shared robot control system combining augmented reality and motor imagery brain-computer interfaces with eye tracking.\",\"authors\":\"Arnau Dillen, Mohsen Omidi, Fakhreddine Ghaffari, Bram Vanderborght, Bart Roelands, Olivier Romain, Ann Nowé, Kevin De Pauw\",\"doi\":\"10.1088/1741-2552/ad7f8d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective</b>: Brain-computer interface (BCI) control systems monitor neural activity to detect the user's intentions, enabling device control through mental imagery. Despite their potential, decoding neural activity in real-world conditions poses significant challenges, making BCIs currently impractical compared to traditional interaction methods. This study introduces a novel motor imagery (MI) BCI control strategy for operating a physically assistive robotic arm, addressing the difficulties of MI decoding from electroencephalogram (EEG) signals, which are inherently non-stationary and vary across individuals.
<b>Approach</b>: A proof-of-concept BCI control system was developed using commercially available hardware, integrating MI with eye tracking in an augmented reality (AR) user interface to facilitate a shared control approach. This system proposes actions based on the user's gaze, enabling selection through imagined movements. A user study was conducted to evaluate the system's usability, focusing on its effectiveness and efficiency.
<b>Main results:</b>Participants performed tasks that simulated everyday activities with the robotic arm, demonstrating the shared control system's feasibility and practicality in real-world scenarios. Despite low online decoding performance (mean accuracy: 0.52 9, F1: 0.29, Cohen's Kappa: 0.12), participants achieved a mean success rate of 0.83 in the final phase of the user study when given 15 minutes to complete the evaluation tasks. The success rate dropped below 0.5 when a 5-minute cutoff time was selected.
<b>Significance</b>: These results indicate that integrating AR and eye tracking can significantly enhance the usability of BCI systems, despite the complexities of MI-EEG decoding. While efficiency is still low, the effectiveness of our approach was verified. This suggests that BCI systems have the potential to become a viable interaction modality for everyday applications
in the future.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ad7f8d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad7f8d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A shared robot control system combining augmented reality and motor imagery brain-computer interfaces with eye tracking.
Objective: Brain-computer interface (BCI) control systems monitor neural activity to detect the user's intentions, enabling device control through mental imagery. Despite their potential, decoding neural activity in real-world conditions poses significant challenges, making BCIs currently impractical compared to traditional interaction methods. This study introduces a novel motor imagery (MI) BCI control strategy for operating a physically assistive robotic arm, addressing the difficulties of MI decoding from electroencephalogram (EEG) signals, which are inherently non-stationary and vary across individuals.
Approach: A proof-of-concept BCI control system was developed using commercially available hardware, integrating MI with eye tracking in an augmented reality (AR) user interface to facilitate a shared control approach. This system proposes actions based on the user's gaze, enabling selection through imagined movements. A user study was conducted to evaluate the system's usability, focusing on its effectiveness and efficiency.
Main results:Participants performed tasks that simulated everyday activities with the robotic arm, demonstrating the shared control system's feasibility and practicality in real-world scenarios. Despite low online decoding performance (mean accuracy: 0.52 9, F1: 0.29, Cohen's Kappa: 0.12), participants achieved a mean success rate of 0.83 in the final phase of the user study when given 15 minutes to complete the evaluation tasks. The success rate dropped below 0.5 when a 5-minute cutoff time was selected.
Significance: These results indicate that integrating AR and eye tracking can significantly enhance the usability of BCI systems, despite the complexities of MI-EEG decoding. While efficiency is still low, the effectiveness of our approach was verified. This suggests that BCI systems have the potential to become a viable interaction modality for everyday applications
in the future.