Aaron Hung Bui, Naomi Beth Rowlands, Anne Dilpashani Fernando Pulle, Sam Andrés Gibbs Medina, Tullia Jade Rohrsheim, Bryan Tyler Tuten
{"title":"高剪切增强大分子粘性介质中的比吉内利反应","authors":"Aaron Hung Bui, Naomi Beth Rowlands, Anne Dilpashani Fernando Pulle, Sam Andrés Gibbs Medina, Tullia Jade Rohrsheim, Bryan Tyler Tuten","doi":"10.1002/marc.202400490","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical reactions and transformations in non-traditional vessels have gained significant interest in recent years. Flow chemistry, with its advantages in mixing, mass transfer, scalability, and automation, is a driving force behind this paradigm shift. In particular, the Vortex Fluidic Device (VFD) has emerged as a versatile tool across various applications, from organic synthesis to materials science. In this study, the role of the VFD in performing the Biginelli reaction, a multicomponent reaction widely used in pharmaceutical and polymer science, for a post-polymerization modification is explored. By conducting the Biginelli reaction in the VFD, rapid product formation with low catalyst loading and without the need for high temperatures is achieved. However, the critical need to understand and know solution viscosity, especially within the context of modifying macromolecules is highlighted.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400490"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Shear Enhancement of Biginelli Reactions in Macromolecular Viscous Media.\",\"authors\":\"Aaron Hung Bui, Naomi Beth Rowlands, Anne Dilpashani Fernando Pulle, Sam Andrés Gibbs Medina, Tullia Jade Rohrsheim, Bryan Tyler Tuten\",\"doi\":\"10.1002/marc.202400490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemical reactions and transformations in non-traditional vessels have gained significant interest in recent years. Flow chemistry, with its advantages in mixing, mass transfer, scalability, and automation, is a driving force behind this paradigm shift. In particular, the Vortex Fluidic Device (VFD) has emerged as a versatile tool across various applications, from organic synthesis to materials science. In this study, the role of the VFD in performing the Biginelli reaction, a multicomponent reaction widely used in pharmaceutical and polymer science, for a post-polymerization modification is explored. By conducting the Biginelli reaction in the VFD, rapid product formation with low catalyst loading and without the need for high temperatures is achieved. However, the critical need to understand and know solution viscosity, especially within the context of modifying macromolecules is highlighted.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400490\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400490\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400490","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
High-Shear Enhancement of Biginelli Reactions in Macromolecular Viscous Media.
Chemical reactions and transformations in non-traditional vessels have gained significant interest in recent years. Flow chemistry, with its advantages in mixing, mass transfer, scalability, and automation, is a driving force behind this paradigm shift. In particular, the Vortex Fluidic Device (VFD) has emerged as a versatile tool across various applications, from organic synthesis to materials science. In this study, the role of the VFD in performing the Biginelli reaction, a multicomponent reaction widely used in pharmaceutical and polymer science, for a post-polymerization modification is explored. By conducting the Biginelli reaction in the VFD, rapid product formation with low catalyst loading and without the need for high temperatures is achieved. However, the critical need to understand and know solution viscosity, especially within the context of modifying macromolecules is highlighted.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.