仿生导航的强化学习:精子趋化的模型问题。

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL The European Physical Journal E Pub Date : 2024-09-27 DOI:10.1140/epje/s10189-024-00451-6
Omar Mohamed, Alan C. H. Tsang
{"title":"仿生导航的强化学习:精子趋化的模型问题。","authors":"Omar Mohamed,&nbsp;Alan C. H. Tsang","doi":"10.1140/epje/s10189-024-00451-6","DOIUrl":null,"url":null,"abstract":"<p>Motile biological cells can respond to local environmental cues and exhibit various navigation strategies to search for specific targets. These navigation strategies usually involve tuning of key biophysical parameters of the cells, such that the cells can modulate their trajectories to move in response to the detected signals. Here we introduce a reinforcement learning approach to modulate key biophysical parameters and realize navigation strategies reminiscent to those developed by biological cells. We present this approach using sperm chemotaxis toward an egg as a paradigm. By modulating the trajectory curvature of a sperm cell model, the navigation strategies informed by reinforcement learning are capable to resemble sperm chemotaxis observed in experiments. This approach provides an alternative method to capture biologically relevant navigation strategies, which may inform the necessary parameter modulations required for obtaining specific navigation strategies and guide the design of biomimetic micro-robotics.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436411/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning of biomimetic navigation: a model problem for sperm chemotaxis\",\"authors\":\"Omar Mohamed,&nbsp;Alan C. H. Tsang\",\"doi\":\"10.1140/epje/s10189-024-00451-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motile biological cells can respond to local environmental cues and exhibit various navigation strategies to search for specific targets. These navigation strategies usually involve tuning of key biophysical parameters of the cells, such that the cells can modulate their trajectories to move in response to the detected signals. Here we introduce a reinforcement learning approach to modulate key biophysical parameters and realize navigation strategies reminiscent to those developed by biological cells. We present this approach using sperm chemotaxis toward an egg as a paradigm. By modulating the trajectory curvature of a sperm cell model, the navigation strategies informed by reinforcement learning are capable to resemble sperm chemotaxis observed in experiments. This approach provides an alternative method to capture biologically relevant navigation strategies, which may inform the necessary parameter modulations required for obtaining specific navigation strategies and guide the design of biomimetic micro-robotics.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"47 9\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436411/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-024-00451-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00451-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

能动的生物细胞能对局部环境线索做出反应,并表现出各种导航策略来寻找特定目标。这些导航策略通常涉及调整细胞的关键生物物理参数,从而使细胞能够根据检测到的信号调节运动轨迹。在这里,我们引入了一种强化学习方法来调节关键的生物物理参数,并实现与生物细胞开发的导航策略类似的导航策略。我们以精子向卵子趋化为例介绍这种方法。通过调节精子细胞模型的轨迹曲率,强化学习所提供的导航策略能够与实验中观察到的精子趋化相似。这种方法为捕捉与生物相关的导航策略提供了另一种方法,可为获得特定导航策略所需的必要参数调节提供信息,并为仿生微型机器人的设计提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement learning of biomimetic navigation: a model problem for sperm chemotaxis

Motile biological cells can respond to local environmental cues and exhibit various navigation strategies to search for specific targets. These navigation strategies usually involve tuning of key biophysical parameters of the cells, such that the cells can modulate their trajectories to move in response to the detected signals. Here we introduce a reinforcement learning approach to modulate key biophysical parameters and realize navigation strategies reminiscent to those developed by biological cells. We present this approach using sperm chemotaxis toward an egg as a paradigm. By modulating the trajectory curvature of a sperm cell model, the navigation strategies informed by reinforcement learning are capable to resemble sperm chemotaxis observed in experiments. This approach provides an alternative method to capture biologically relevant navigation strategies, which may inform the necessary parameter modulations required for obtaining specific navigation strategies and guide the design of biomimetic micro-robotics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
期刊最新文献
Modeling straight and circle swimmers: from single swimmer to collective motion Multibody interactions between protein inclusions in the pointlike curvature model for tense and tensionless membranes Research on sedimentation characteristics of squirmer in a power-law fluid Effect of repulsive interaction and initial velocity on collective motion process A structural determinant of the behavior of water at hydration and nanoconfinement conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1