利用流式细胞术比较分析鸡脾脏免疫细胞在不同年龄段的变化。

IF 2.3 2区 农林科学 Q1 VETERINARY SCIENCES BMC Veterinary Research Pub Date : 2024-09-28 DOI:10.1186/s12917-024-04287-2
Yeonjae Lee, Rangyeon Lee, Jieun Kim, Yong-Hyun Han, Christopher Hunter, Jeongho Park
{"title":"利用流式细胞术比较分析鸡脾脏免疫细胞在不同年龄段的变化。","authors":"Yeonjae Lee, Rangyeon Lee, Jieun Kim, Yong-Hyun Han, Christopher Hunter, Jeongho Park","doi":"10.1186/s12917-024-04287-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Concurrent emerging and reemerging avian infectious diseases cause multiple risk factors in poultry. A body amount studies attempted to understand pathogen-associated immunity in chickens. Recent research has made progress in identifying immune functions in chicken, there are still gaps in knowledge, especially regarding immune responses during infectious diseases. A deeper understanding in chicken immune system is critical for improving disease control strategies and vaccine development.</p><p><strong>Results: </strong>This study proposes analytical method for chicken splenocytes, enabling the tracking changes in T cells, monocytes, and B cells across three ages. Optimized lymphocyte-activating conditions were suggested using concanavalin A and chicken interleikin-2, which facilitate immune cell activation and proliferation. Next, splenocytes from embryonic day 18, day 5, and day 30 were compared using surface markers and flow cytometry analysis. We observed an increase in T cell subsets, including activated T cells (CD4<sup>+</sup>CD44<sup>+</sup> and CD8<sup>+</sup>CD44<sup>+</sup>), and B cells, along with a reduced monocyte population after hatching. However, morphological changes and genetic expression of functional immune molecules were limited.</p><p><strong>Conclusions: </strong>The present findings on chicken immune system development offer valuable insights into the avian immune system, including analytical methods and the phenotypic and functional changes in immune cells. Updated immune-boosting strategies during the early stages of life are crucial for developing preventive measures against major infectious diseases in the poultry industry.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438354/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of changes in immune cell in the chicken spleen across different ages using flow cytometry.\",\"authors\":\"Yeonjae Lee, Rangyeon Lee, Jieun Kim, Yong-Hyun Han, Christopher Hunter, Jeongho Park\",\"doi\":\"10.1186/s12917-024-04287-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Concurrent emerging and reemerging avian infectious diseases cause multiple risk factors in poultry. A body amount studies attempted to understand pathogen-associated immunity in chickens. Recent research has made progress in identifying immune functions in chicken, there are still gaps in knowledge, especially regarding immune responses during infectious diseases. A deeper understanding in chicken immune system is critical for improving disease control strategies and vaccine development.</p><p><strong>Results: </strong>This study proposes analytical method for chicken splenocytes, enabling the tracking changes in T cells, monocytes, and B cells across three ages. Optimized lymphocyte-activating conditions were suggested using concanavalin A and chicken interleikin-2, which facilitate immune cell activation and proliferation. Next, splenocytes from embryonic day 18, day 5, and day 30 were compared using surface markers and flow cytometry analysis. We observed an increase in T cell subsets, including activated T cells (CD4<sup>+</sup>CD44<sup>+</sup> and CD8<sup>+</sup>CD44<sup>+</sup>), and B cells, along with a reduced monocyte population after hatching. However, morphological changes and genetic expression of functional immune molecules were limited.</p><p><strong>Conclusions: </strong>The present findings on chicken immune system development offer valuable insights into the avian immune system, including analytical methods and the phenotypic and functional changes in immune cells. Updated immune-boosting strategies during the early stages of life are crucial for developing preventive measures against major infectious diseases in the poultry industry.</p>\",\"PeriodicalId\":9041,\"journal\":{\"name\":\"BMC Veterinary Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438354/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12917-024-04287-2\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-024-04287-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:同时出现和再次出现的禽类传染病会给家禽带来多种风险因素。大量研究试图了解鸡体内与病原体相关的免疫功能。最近的研究在确定鸡的免疫功能方面取得了进展,但仍然存在知识空白,尤其是在传染病发生时的免疫反应方面。深入了解鸡的免疫系统对于改进疾病控制策略和疫苗开发至关重要:本研究提出了鸡脾细胞的分析方法,可追踪三个年龄段的 T 细胞、单核细胞和 B 细胞的变化。研究提出了优化的淋巴细胞活化条件,即使用能促进免疫细胞活化和增殖的 concanavalin A 和鸡白细胞介素-2。接着,使用表面标记物和流式细胞术分析比较了胚胎第 18 天、第 5 天和第 30 天的脾细胞。我们观察到孵化后 T 细胞亚群(包括活化 T 细胞(CD4+CD44+ 和 CD8+CD44+))和 B 细胞增加,单核细胞数量减少。然而,形态学变化和功能性免疫分子的基因表达却很有限:目前关于鸡免疫系统发育的研究结果为禽类免疫系统提供了宝贵的见解,包括分析方法以及免疫细胞的表型和功能变化。生命早期阶段的最新免疫增强策略对于制定家禽业主要传染病的预防措施至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis of changes in immune cell in the chicken spleen across different ages using flow cytometry.

Background: Concurrent emerging and reemerging avian infectious diseases cause multiple risk factors in poultry. A body amount studies attempted to understand pathogen-associated immunity in chickens. Recent research has made progress in identifying immune functions in chicken, there are still gaps in knowledge, especially regarding immune responses during infectious diseases. A deeper understanding in chicken immune system is critical for improving disease control strategies and vaccine development.

Results: This study proposes analytical method for chicken splenocytes, enabling the tracking changes in T cells, monocytes, and B cells across three ages. Optimized lymphocyte-activating conditions were suggested using concanavalin A and chicken interleikin-2, which facilitate immune cell activation and proliferation. Next, splenocytes from embryonic day 18, day 5, and day 30 were compared using surface markers and flow cytometry analysis. We observed an increase in T cell subsets, including activated T cells (CD4+CD44+ and CD8+CD44+), and B cells, along with a reduced monocyte population after hatching. However, morphological changes and genetic expression of functional immune molecules were limited.

Conclusions: The present findings on chicken immune system development offer valuable insights into the avian immune system, including analytical methods and the phenotypic and functional changes in immune cells. Updated immune-boosting strategies during the early stages of life are crucial for developing preventive measures against major infectious diseases in the poultry industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Veterinary Research
BMC Veterinary Research VETERINARY SCIENCES-
CiteScore
4.80
自引率
3.80%
发文量
420
审稿时长
3-6 weeks
期刊介绍: BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.
期刊最新文献
Comparative analysis of innate immune responses in Sonali and broiler chickens infected with tribasic H9N2 low pathogenic avian influenza virus. Genetic characteristics and antimicrobial resistance of Staphylococcus aureus isolates from pig farms in Korea: emergence of cfr-positive CC398 lineage. Plasma N-terminal pro-B-type natriuretic peptide and urinary aldosterone-to-creatinine ratio in healthy Chihuahuas. Upper respiratory tract detection of Mycoplasma ovipneumoniae employing nasopharyngeal swabs. The clinical efficacy of cGMP-specific sildenafil on mitochondrial biogenesis induction and renal damage in cats with acute on chronic kidney disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1