{"title":"Aβ 可远程和局部促进阿尔茨海默病 tau 的扩散。","authors":"Fardin Nabizadeh","doi":"10.1093/cercor/bhae386","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta plaques initiated approximately 2 decades before the symptom onset followed by build-up and spreading of neurofibrillary tau aggregates. Although it has been suggested that the amyloid-beta amplifies tau spreading the observed spatial disparity called it into question. Yet, it is unclear how neocortical amyloid-beta remotely affects early pathological tau, triggering it to leave the early formation area, and how amyloid-beta facilitates tau aggregate spreading throughout cortical regions. I aimed to investigate how amyloid-beta can facilitate tau spreading through neuronal connections in the Alzheimer's disease pathological process by combining functional magnetic resonance imaging normative connectomes and longitudinal in vivo molecular imaging data. In total, the imaging data of 317 participants, including 173 amyloid-beta-negative non-demented and 144 amyloid-beta -positive non-demented participants, have entered the study from Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional magnetic resonance imaging connectomes were used to model tau spreading through functional connections. It was observed that the amyloid-beta in regions with the highest deposition (amyloid-beta epicenter) is remotely associated with connectivity-based spreading of tau pathology. Moreover, amyloid-beta in regions that exhibit the highest tau pathology (tau epicenter) is associated with increased connectivity-based tau spreading to non-epicenter regions. The findings provide a further explanation for a long-standing question of how amyloid-beta can affect tau aggregate spreading through neuronal connections despite spatial incongruity. The results suggest that amyloid-beta pathology can remotely and locally facilitate connectivity-based spreading of tau aggregates.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aβ remotely and locally facilitates Alzheimer's disease tau spreading.\",\"authors\":\"Fardin Nabizadeh\",\"doi\":\"10.1093/cercor/bhae386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta plaques initiated approximately 2 decades before the symptom onset followed by build-up and spreading of neurofibrillary tau aggregates. Although it has been suggested that the amyloid-beta amplifies tau spreading the observed spatial disparity called it into question. Yet, it is unclear how neocortical amyloid-beta remotely affects early pathological tau, triggering it to leave the early formation area, and how amyloid-beta facilitates tau aggregate spreading throughout cortical regions. I aimed to investigate how amyloid-beta can facilitate tau spreading through neuronal connections in the Alzheimer's disease pathological process by combining functional magnetic resonance imaging normative connectomes and longitudinal in vivo molecular imaging data. In total, the imaging data of 317 participants, including 173 amyloid-beta-negative non-demented and 144 amyloid-beta -positive non-demented participants, have entered the study from Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional magnetic resonance imaging connectomes were used to model tau spreading through functional connections. It was observed that the amyloid-beta in regions with the highest deposition (amyloid-beta epicenter) is remotely associated with connectivity-based spreading of tau pathology. Moreover, amyloid-beta in regions that exhibit the highest tau pathology (tau epicenter) is associated with increased connectivity-based tau spreading to non-epicenter regions. The findings provide a further explanation for a long-standing question of how amyloid-beta can affect tau aggregate spreading through neuronal connections despite spatial incongruity. The results suggest that amyloid-beta pathology can remotely and locally facilitate connectivity-based spreading of tau aggregates.</p>\",\"PeriodicalId\":9715,\"journal\":{\"name\":\"Cerebral cortex\",\"volume\":\"34 9\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/cercor/bhae386\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae386","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
阿尔茨海默病(AD)的特征是淀粉样蛋白-β斑块在发病前约 20 年就开始积累,随后神经纤维状 tau 聚集体逐渐增加并扩散。尽管有人认为淀粉样蛋白-β会放大tau的扩散,但观察到的空间差异却让人质疑。然而,目前还不清楚新皮质淀粉样蛋白-β如何远程影响早期病理tau,促使其离开早期形成区域,以及淀粉样蛋白-β如何促进tau聚集体扩散到整个皮质区域。我的目的是结合功能磁共振成像标准连接组和纵向体内分子成像数据,研究淀粉样蛋白-β如何在阿尔茨海默病病理过程中促进tau通过神经元连接扩散。共有317名参与者的成像数据进入了阿尔茨海默病神经成像倡议的研究,其中包括173名淀粉样蛋白-β阴性的非痴呆参与者和144名淀粉样蛋白-β阳性的非痴呆参与者。此外,研究人员还利用正常静息态功能磁共振成像连接组来模拟 tau 通过功能连接进行的扩散。研究观察到,淀粉样蛋白-β沉积最多的区域(淀粉样蛋白-β震中)与基于连接的tau病理学扩散密切相关。此外,在tau病理变化最高的区域(tau震中),淀粉样蛋白-β与基于连接的tau向非震中区域扩散的增加有关。这些发现进一步解释了一个长期存在的问题,即淀粉样蛋白-β如何在空间不一致的情况下通过神经元连接影响tau聚集体的扩散。研究结果表明,淀粉样蛋白-β病理变化可远程和局部促进基于连接的tau聚集体扩散。
Aβ remotely and locally facilitates Alzheimer's disease tau spreading.
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta plaques initiated approximately 2 decades before the symptom onset followed by build-up and spreading of neurofibrillary tau aggregates. Although it has been suggested that the amyloid-beta amplifies tau spreading the observed spatial disparity called it into question. Yet, it is unclear how neocortical amyloid-beta remotely affects early pathological tau, triggering it to leave the early formation area, and how amyloid-beta facilitates tau aggregate spreading throughout cortical regions. I aimed to investigate how amyloid-beta can facilitate tau spreading through neuronal connections in the Alzheimer's disease pathological process by combining functional magnetic resonance imaging normative connectomes and longitudinal in vivo molecular imaging data. In total, the imaging data of 317 participants, including 173 amyloid-beta-negative non-demented and 144 amyloid-beta -positive non-demented participants, have entered the study from Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional magnetic resonance imaging connectomes were used to model tau spreading through functional connections. It was observed that the amyloid-beta in regions with the highest deposition (amyloid-beta epicenter) is remotely associated with connectivity-based spreading of tau pathology. Moreover, amyloid-beta in regions that exhibit the highest tau pathology (tau epicenter) is associated with increased connectivity-based tau spreading to non-epicenter regions. The findings provide a further explanation for a long-standing question of how amyloid-beta can affect tau aggregate spreading through neuronal connections despite spatial incongruity. The results suggest that amyloid-beta pathology can remotely and locally facilitate connectivity-based spreading of tau aggregates.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.