用于高效光电化学水分离的梯度掺杂 BiVO4 双光电阳极

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2024-09-26 DOI:10.1002/cphc.202400692
Xuhao Yang, Shuang Liang, Jiaming Miao, Yilong Yang, sKan Zhang
{"title":"用于高效光电化学水分离的梯度掺杂 BiVO4 双光电阳极","authors":"Xuhao Yang, Shuang Liang, Jiaming Miao, Yilong Yang, sKan Zhang","doi":"10.1002/cphc.202400692","DOIUrl":null,"url":null,"abstract":"<p><p>Bismuth vanadate (BiVO<sub>4</sub>) is regarded as a promising photoanode candidate for photoelectrochemical (PEC) water splitting, but is limited by low efficiency of charge carrier transport and short carrier diffusion length. In this work, we report a strategy comprised of the gradient doping of W and back-to-back stacking of transparent photoelectrodes, where the 3-2 wt.% W gradient doping enhances charge carrier transport by optimizing the band bending degree and back-to-back stack configuration shortens carrier diffusion length without much sacrifice of photons. As a result, the photocurrent density of 3-2 % W:BiVO<sub>4</sub> photoanode reaches 2.20 mA cm<sup>-2</sup> at 1.23 V vs. hydrogen electrode (RHE) with a charge transport efficiency of 76.1 % under AM 1.5 G illumination, and the back-to-back stacked 3-2 % W:BiVO<sub>4</sub> photoanodes achieves a photocurrent of 4.63 mA cm<sup>-2</sup> after loading Co-Pi catalyst and anti-reflective coating under AM 1.5 G illumination, with long-term stability of 10 hours.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient-Doped BiVO<sub>4</sub> Dual Photoanodes for Highly Efficient Photoelectrochemical Water Splitting.\",\"authors\":\"Xuhao Yang, Shuang Liang, Jiaming Miao, Yilong Yang, sKan Zhang\",\"doi\":\"10.1002/cphc.202400692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bismuth vanadate (BiVO<sub>4</sub>) is regarded as a promising photoanode candidate for photoelectrochemical (PEC) water splitting, but is limited by low efficiency of charge carrier transport and short carrier diffusion length. In this work, we report a strategy comprised of the gradient doping of W and back-to-back stacking of transparent photoelectrodes, where the 3-2 wt.% W gradient doping enhances charge carrier transport by optimizing the band bending degree and back-to-back stack configuration shortens carrier diffusion length without much sacrifice of photons. As a result, the photocurrent density of 3-2 % W:BiVO<sub>4</sub> photoanode reaches 2.20 mA cm<sup>-2</sup> at 1.23 V vs. hydrogen electrode (RHE) with a charge transport efficiency of 76.1 % under AM 1.5 G illumination, and the back-to-back stacked 3-2 % W:BiVO<sub>4</sub> photoanodes achieves a photocurrent of 4.63 mA cm<sup>-2</sup> after loading Co-Pi catalyst and anti-reflective coating under AM 1.5 G illumination, with long-term stability of 10 hours.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400692\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400692","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钒酸铋(BiVO4)被认为是一种很有前途的光电化学(PEC)水分离光阳极候选材料,但却受到电荷载流子传输效率低和载流子扩散长度短的限制。在这项工作中,我们报告了一种由 W 的梯度掺杂和透明光电极背靠背堆叠组成的策略,其中 3-2 wt.% W 的梯度掺杂通过优化带弯曲度来增强电荷载流子传输,而背靠背堆叠配置在不牺牲太多光子的情况下缩短了载流子扩散长度。因此,3-2% W:BiVO4 光阳极在 1.23 V 相对于氢电极(RHE)电压下的光电流密度达到了 2.20 mA cm-2,在 AM 1.5G 光照下的电荷传输效率为 76.1%,而背靠背堆叠的 3-2% W:BiVO4 光阳极在加载 Co-Pi 催化剂和抗反射涂层后,在 AM 1.5G 光照下的光电流密度达到了 4.63 mA cm-2,并具有 10 小时的长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gradient-Doped BiVO4 Dual Photoanodes for Highly Efficient Photoelectrochemical Water Splitting.

Bismuth vanadate (BiVO4) is regarded as a promising photoanode candidate for photoelectrochemical (PEC) water splitting, but is limited by low efficiency of charge carrier transport and short carrier diffusion length. In this work, we report a strategy comprised of the gradient doping of W and back-to-back stacking of transparent photoelectrodes, where the 3-2 wt.% W gradient doping enhances charge carrier transport by optimizing the band bending degree and back-to-back stack configuration shortens carrier diffusion length without much sacrifice of photons. As a result, the photocurrent density of 3-2 % W:BiVO4 photoanode reaches 2.20 mA cm-2 at 1.23 V vs. hydrogen electrode (RHE) with a charge transport efficiency of 76.1 % under AM 1.5 G illumination, and the back-to-back stacked 3-2 % W:BiVO4 photoanodes achieves a photocurrent of 4.63 mA cm-2 after loading Co-Pi catalyst and anti-reflective coating under AM 1.5 G illumination, with long-term stability of 10 hours.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
Electrophoretic deposition of carbon-ionomer layers on proton conducting membranes. Exploring Gas Evolution Oscillators: Mechanisms and Applications. Meta-connected Oligo-Azobenzenes Outperform Their Para Counterparts. Absence of the third linker domain of ApcE subunit in phycobilisome from Synechocystis 6803 reduces rods-to-core excitation energy transfer. Metal-Metal Bonding in Tri-Actinide Clusters: A DFT Study of [An3Cl6] z (z = 1-6) and [An3Cl6Cp3] z (z = -2- +3; An = Ac, Th, Pa, U, Np, Pu).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1