基于 EEMD 和功率谱熵的输电线路故障诊断改进。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-09-21 DOI:10.3390/e26090806
Yuan-Bin Chen, Hui-Shan Cui, Chia-Wei Huang, Wei-Tai Hsu
{"title":"基于 EEMD 和功率谱熵的输电线路故障诊断改进。","authors":"Yuan-Bin Chen, Hui-Shan Cui, Chia-Wei Huang, Wei-Tai Hsu","doi":"10.3390/e26090806","DOIUrl":null,"url":null,"abstract":"<p><p>The fault diagnosis on a transmission line based on the characteristics of the power spectral entropy is proposed in this article. The data preprocessing for the experimental measurement is also introduced using the EEMD. The EEMD is used to preprocess experimental measurements, which are nonlinear and non-stationary fault signals, to overcome the mode mixing. This study focuses on the fault location detection of transmission lines during faults. The proposed method is adopted for different fault types through simulation under the fault point by collecting current and voltage signals at a distance from the fault point. An analysis and comprehensive evaluation of three-phase measured current and voltage signals at distinct fault locations is conducted. The form and position of the fault are distinguished directly and effectively, thereby significantly improving the transmission line efficiency and accuracy of fault diagnosis.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431672/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving Transmission Line Fault Diagnosis Based on EEMD and Power Spectral Entropy.\",\"authors\":\"Yuan-Bin Chen, Hui-Shan Cui, Chia-Wei Huang, Wei-Tai Hsu\",\"doi\":\"10.3390/e26090806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fault diagnosis on a transmission line based on the characteristics of the power spectral entropy is proposed in this article. The data preprocessing for the experimental measurement is also introduced using the EEMD. The EEMD is used to preprocess experimental measurements, which are nonlinear and non-stationary fault signals, to overcome the mode mixing. This study focuses on the fault location detection of transmission lines during faults. The proposed method is adopted for different fault types through simulation under the fault point by collecting current and voltage signals at a distance from the fault point. An analysis and comprehensive evaluation of three-phase measured current and voltage signals at distinct fault locations is conducted. The form and position of the fault are distinguished directly and effectively, thereby significantly improving the transmission line efficiency and accuracy of fault diagnosis.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 9\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431672/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26090806\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26090806","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了基于功率谱熵特性的输电线路故障诊断方法。此外,还介绍了利用 EEMD 对实验测量进行数据预处理的方法。EEMD 用于对非线性和非稳态故障信号的实验测量数据进行预处理,以克服模式混合问题。本研究的重点是故障期间输电线路的故障定位检测。通过采集距离故障点一定距离的电流和电压信号,在故障点下进行仿真,针对不同的故障类型采用所提出的方法。对不同故障点的三相测量电流和电压信号进行分析和综合评估。直接有效地区分了故障的形式和位置,从而大大提高了输电线路的效率和故障诊断的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Transmission Line Fault Diagnosis Based on EEMD and Power Spectral Entropy.

The fault diagnosis on a transmission line based on the characteristics of the power spectral entropy is proposed in this article. The data preprocessing for the experimental measurement is also introduced using the EEMD. The EEMD is used to preprocess experimental measurements, which are nonlinear and non-stationary fault signals, to overcome the mode mixing. This study focuses on the fault location detection of transmission lines during faults. The proposed method is adopted for different fault types through simulation under the fault point by collecting current and voltage signals at a distance from the fault point. An analysis and comprehensive evaluation of three-phase measured current and voltage signals at distinct fault locations is conducted. The form and position of the fault are distinguished directly and effectively, thereby significantly improving the transmission line efficiency and accuracy of fault diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Assessment of Nuclear Fusion Reaction Spontaneity via Engineering Thermodynamics. A Multilayer Nonlinear Permutation Framework and Its Demonstration in Lightweight Image Encryption. A Synergistic Perspective on Multivariate Computation and Causality in Complex Systems. Adaptive Privacy-Preserving Coded Computing with Hierarchical Task Partitioning. Advanced Exergy-Based Optimization of a Polygeneration System with CO2 as Working Fluid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1