Rrita Daci, Heather Gray-Edwards, Mohammed Salman Shazeeb, Zeynep Vardar, Behroze Vachha, Oguz I Cataltepe, Terence R Flotte
{"title":"神经成像在中枢神经系统疾病基因治疗的传递和监测中的应用。","authors":"Rrita Daci, Heather Gray-Edwards, Mohammed Salman Shazeeb, Zeynep Vardar, Behroze Vachha, Oguz I Cataltepe, Terence R Flotte","doi":"10.1089/hum.2024.057","DOIUrl":null,"url":null,"abstract":"<p><p>Neurological disease due to single-gene defects represents a targetable entity for adeno-associated virus (AAV)-mediated gene therapy. The delivery of AAV-mediated gene therapy to the brain is challenging, owing to the presence of the blood-brain barrier. Techniques in gene transfer, such as convection-enhanced intraparenchymal delivery and image-guided delivery to the cerebrospinal fluid spaces of the brain, have led the field into highly accurate delivery techniques, which provide correction of genetic defects in specific brain regions or more broadly. These techniques commonly use magnetic resonance imaging (MRI), computed tomography, and fluoroscopic guidance. Even more, the neuroimaging changes evaluated by MRI, MR spectroscopy, diffusion tensor imaging, and functional MRI can serve as important biomarkers of therapy effect and overall disease progression. Here, we discuss the role of neuroimaging in delivering AAV vectors and monitoring the effect of gene therapy.</p>","PeriodicalId":13007,"journal":{"name":"Human gene therapy","volume":" ","pages":"886-895"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroimaging Applications for the Delivery and Monitoring of Gene Therapy for Central Nervous System Diseases.\",\"authors\":\"Rrita Daci, Heather Gray-Edwards, Mohammed Salman Shazeeb, Zeynep Vardar, Behroze Vachha, Oguz I Cataltepe, Terence R Flotte\",\"doi\":\"10.1089/hum.2024.057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurological disease due to single-gene defects represents a targetable entity for adeno-associated virus (AAV)-mediated gene therapy. The delivery of AAV-mediated gene therapy to the brain is challenging, owing to the presence of the blood-brain barrier. Techniques in gene transfer, such as convection-enhanced intraparenchymal delivery and image-guided delivery to the cerebrospinal fluid spaces of the brain, have led the field into highly accurate delivery techniques, which provide correction of genetic defects in specific brain regions or more broadly. These techniques commonly use magnetic resonance imaging (MRI), computed tomography, and fluoroscopic guidance. Even more, the neuroimaging changes evaluated by MRI, MR spectroscopy, diffusion tensor imaging, and functional MRI can serve as important biomarkers of therapy effect and overall disease progression. Here, we discuss the role of neuroimaging in delivering AAV vectors and monitoring the effect of gene therapy.</p>\",\"PeriodicalId\":13007,\"journal\":{\"name\":\"Human gene therapy\",\"volume\":\" \",\"pages\":\"886-895\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/hum.2024.057\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/hum.2024.057","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Neuroimaging Applications for the Delivery and Monitoring of Gene Therapy for Central Nervous System Diseases.
Neurological disease due to single-gene defects represents a targetable entity for adeno-associated virus (AAV)-mediated gene therapy. The delivery of AAV-mediated gene therapy to the brain is challenging, owing to the presence of the blood-brain barrier. Techniques in gene transfer, such as convection-enhanced intraparenchymal delivery and image-guided delivery to the cerebrospinal fluid spaces of the brain, have led the field into highly accurate delivery techniques, which provide correction of genetic defects in specific brain regions or more broadly. These techniques commonly use magnetic resonance imaging (MRI), computed tomography, and fluoroscopic guidance. Even more, the neuroimaging changes evaluated by MRI, MR spectroscopy, diffusion tensor imaging, and functional MRI can serve as important biomarkers of therapy effect and overall disease progression. Here, we discuss the role of neuroimaging in delivering AAV vectors and monitoring the effect of gene therapy.
期刊介绍:
Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases.