{"title":"基于元路径相似性和高斯核相似性的 LncRNA-miRNA 相互作用预测。","authors":"Jingxuan Xie, Peng Xu, Ye Lin, Manyu Zheng, Jixuan Jia, Xinru Tan, Jianqiang Sun, Qi Zhao","doi":"10.1111/jcmm.18590","DOIUrl":null,"url":null,"abstract":"<p>Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are two typical types of non-coding RNAs that interact and play important regulatory roles in many animal organisms. Exploring the unknown interactions between lncRNAs and miRNAs contributes to a better understanding of their functional involvement. Currently, studying the interactions between lncRNAs and miRNAs heavily relies on laborious biological experiments. Therefore, it is necessary to design a computational method for predicting lncRNA–miRNA interactions. In this work, we propose a method called MPGK-LMI, which utilizes a graph attention network (GAT) to predict lncRNA–miRNA interactions in animals. First, we construct a meta-path similarity matrix based on known lncRNA–miRNA interaction information. Then, we use GAT to aggregate the constructed meta-path similarity matrix and the computed Gaussian kernel similarity matrix to update the feature matrix with neighbourhood information. Finally, a scoring module is used for prediction. By comparing with three state-of-the-art algorithms, MPGK-LMI achieves the best results in terms of performance, with AUC value of 0.9077, AUPR of 0.9327, ACC of 0.9080, F1-score of 0.9143 and precision of 0.8739. These results validate the effectiveness and reliability of MPGK-LMI. Additionally, we conduct detailed case studies to demonstrate the effectiveness and feasibility of our approach in practical applications. Through these empirical results, we gain deeper insights into the functional roles and mechanisms of lncRNA–miRNA interactions, providing significant breakthroughs and advancements in this field of research. In summary, our method not only outperforms others in terms of performance but also establishes its practicality and reliability in biological research through real-case analysis, offering strong support and guidance for future studies and applications.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"28 19","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441278/pdf/","citationCount":"0","resultStr":"{\"title\":\"LncRNA–miRNA interactions prediction based on meta-path similarity and Gaussian kernel similarity\",\"authors\":\"Jingxuan Xie, Peng Xu, Ye Lin, Manyu Zheng, Jixuan Jia, Xinru Tan, Jianqiang Sun, Qi Zhao\",\"doi\":\"10.1111/jcmm.18590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are two typical types of non-coding RNAs that interact and play important regulatory roles in many animal organisms. Exploring the unknown interactions between lncRNAs and miRNAs contributes to a better understanding of their functional involvement. Currently, studying the interactions between lncRNAs and miRNAs heavily relies on laborious biological experiments. Therefore, it is necessary to design a computational method for predicting lncRNA–miRNA interactions. In this work, we propose a method called MPGK-LMI, which utilizes a graph attention network (GAT) to predict lncRNA–miRNA interactions in animals. First, we construct a meta-path similarity matrix based on known lncRNA–miRNA interaction information. Then, we use GAT to aggregate the constructed meta-path similarity matrix and the computed Gaussian kernel similarity matrix to update the feature matrix with neighbourhood information. Finally, a scoring module is used for prediction. By comparing with three state-of-the-art algorithms, MPGK-LMI achieves the best results in terms of performance, with AUC value of 0.9077, AUPR of 0.9327, ACC of 0.9080, F1-score of 0.9143 and precision of 0.8739. These results validate the effectiveness and reliability of MPGK-LMI. Additionally, we conduct detailed case studies to demonstrate the effectiveness and feasibility of our approach in practical applications. Through these empirical results, we gain deeper insights into the functional roles and mechanisms of lncRNA–miRNA interactions, providing significant breakthroughs and advancements in this field of research. In summary, our method not only outperforms others in terms of performance but also establishes its practicality and reliability in biological research through real-case analysis, offering strong support and guidance for future studies and applications.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"28 19\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.18590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.18590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LncRNA–miRNA interactions prediction based on meta-path similarity and Gaussian kernel similarity
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are two typical types of non-coding RNAs that interact and play important regulatory roles in many animal organisms. Exploring the unknown interactions between lncRNAs and miRNAs contributes to a better understanding of their functional involvement. Currently, studying the interactions between lncRNAs and miRNAs heavily relies on laborious biological experiments. Therefore, it is necessary to design a computational method for predicting lncRNA–miRNA interactions. In this work, we propose a method called MPGK-LMI, which utilizes a graph attention network (GAT) to predict lncRNA–miRNA interactions in animals. First, we construct a meta-path similarity matrix based on known lncRNA–miRNA interaction information. Then, we use GAT to aggregate the constructed meta-path similarity matrix and the computed Gaussian kernel similarity matrix to update the feature matrix with neighbourhood information. Finally, a scoring module is used for prediction. By comparing with three state-of-the-art algorithms, MPGK-LMI achieves the best results in terms of performance, with AUC value of 0.9077, AUPR of 0.9327, ACC of 0.9080, F1-score of 0.9143 and precision of 0.8739. These results validate the effectiveness and reliability of MPGK-LMI. Additionally, we conduct detailed case studies to demonstrate the effectiveness and feasibility of our approach in practical applications. Through these empirical results, we gain deeper insights into the functional roles and mechanisms of lncRNA–miRNA interactions, providing significant breakthroughs and advancements in this field of research. In summary, our method not only outperforms others in terms of performance but also establishes its practicality and reliability in biological research through real-case analysis, offering strong support and guidance for future studies and applications.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.