通过基于深度对接、药理模型和分子动力学模拟的组合策略发现选择性 ACAT2 拮抗剂。

IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2024-12-01 Epub Date: 2024-09-24 DOI:10.1080/14756366.2024.2403736
Yanfeng Liu, Feng Ding, Liangying Deng, Shuran Zhang, Lixing Wu, Huangjin Tong
{"title":"通过基于深度对接、药理模型和分子动力学模拟的组合策略发现选择性 ACAT2 拮抗剂。","authors":"Yanfeng Liu, Feng Ding, Liangying Deng, Shuran Zhang, Lixing Wu, Huangjin Tong","doi":"10.1080/14756366.2024.2403736","DOIUrl":null,"url":null,"abstract":"<p><p>Acyl-CoA: cholesterol acyltransferase (ACAT), a pivotal enzyme in the absorption and metabolism of cholesterol, is primarily responsible for intracellular esterification. ACAT inhibition is expected to diminish plasma lipid levels by impeding intestinal cholesterol absorption, thereby preventing the progression of atherosclerotic lesions. A previous study shows that selective inhibition of ACAT2 significantly mitigated hypercholesterolaemia and atherosclerosis in mouse models. Therefore, the need for ACAT2 selective inhibitors becomes particularly urgent. In this study, we established a multilayer virtual screening workflow and subjected biologically evaluated representative compounds to enzyme inhibitory assays. The experimental results indicated that the two compounds, STL565001 (inhibition rate at 25 μM: 75.7 ± 27.8%, selectivity = 6) and STL528213 (inhibition rate at 25 μM: 87.8 ± 12.4%, selectivity = 13), demonstrated robust activity against ACAT2, displaying greater selectivity for ACAT2 than for ACAT1. The molecular mechanisms governing the inhibitory activities of the selected compounds were systematically elucidated using computational approaches. In addition, hotspot residues in ACAT2 that are crucial for ligand binding were successfully identified. In summary, we devised a multilayer screening scheme to expeditiously and efficiently identify compounds with enzyme inhibitory activity, offering novel scaffolds for subsequent drug design centred on ACAT2 targets.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423527/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovery of selective ACAT2 antagonist via a combination strategy based on deep docking, pharmacophore modelling, and molecular dynamics simulation.\",\"authors\":\"Yanfeng Liu, Feng Ding, Liangying Deng, Shuran Zhang, Lixing Wu, Huangjin Tong\",\"doi\":\"10.1080/14756366.2024.2403736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acyl-CoA: cholesterol acyltransferase (ACAT), a pivotal enzyme in the absorption and metabolism of cholesterol, is primarily responsible for intracellular esterification. ACAT inhibition is expected to diminish plasma lipid levels by impeding intestinal cholesterol absorption, thereby preventing the progression of atherosclerotic lesions. A previous study shows that selective inhibition of ACAT2 significantly mitigated hypercholesterolaemia and atherosclerosis in mouse models. Therefore, the need for ACAT2 selective inhibitors becomes particularly urgent. In this study, we established a multilayer virtual screening workflow and subjected biologically evaluated representative compounds to enzyme inhibitory assays. The experimental results indicated that the two compounds, STL565001 (inhibition rate at 25 μM: 75.7 ± 27.8%, selectivity = 6) and STL528213 (inhibition rate at 25 μM: 87.8 ± 12.4%, selectivity = 13), demonstrated robust activity against ACAT2, displaying greater selectivity for ACAT2 than for ACAT1. The molecular mechanisms governing the inhibitory activities of the selected compounds were systematically elucidated using computational approaches. In addition, hotspot residues in ACAT2 that are crucial for ligand binding were successfully identified. In summary, we devised a multilayer screening scheme to expeditiously and efficiently identify compounds with enzyme inhibitory activity, offering novel scaffolds for subsequent drug design centred on ACAT2 targets.</p>\",\"PeriodicalId\":15769,\"journal\":{\"name\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423527/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Enzyme Inhibition and Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14756366.2024.2403736\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2024.2403736","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

酰基-CoA:胆固醇酰基转移酶(ACAT)是胆固醇吸收和代谢的关键酶,主要负责细胞内酯化。抑制 ACAT 可抑制肠道对胆固醇的吸收,从而降低血浆脂质水平,防止动脉粥样硬化病变的发展。先前的一项研究表明,选择性抑制 ACAT2 能显著减轻小鼠模型中的高胆固醇血症和动脉粥样硬化。因此,对 ACAT2 选择性抑制剂的需求变得尤为迫切。在本研究中,我们建立了多层虚拟筛选工作流程,并对生物学评价的代表性化合物进行了酶抑制实验。实验结果表明,STL565001(25 μM时抑制率:75.7 ± 27.8%,选择性 = 6)和 STL528213(25 μM时抑制率:87.8 ± 12.4%,选择性 = 13)这两种化合物对 ACAT2 具有很强的活性,对 ACAT2 的选择性高于对 ACAT1 的选择性。利用计算方法系统地阐明了所选化合物抑制活性的分子机制。此外,还成功鉴定了 ACAT2 中对配体结合至关重要的热点残基。总之,我们设计了一种多层筛选方案,可以快速有效地鉴定出具有酶抑制活性的化合物,为后续以 ACAT2 靶点为中心的药物设计提供了新的支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of selective ACAT2 antagonist via a combination strategy based on deep docking, pharmacophore modelling, and molecular dynamics simulation.

Acyl-CoA: cholesterol acyltransferase (ACAT), a pivotal enzyme in the absorption and metabolism of cholesterol, is primarily responsible for intracellular esterification. ACAT inhibition is expected to diminish plasma lipid levels by impeding intestinal cholesterol absorption, thereby preventing the progression of atherosclerotic lesions. A previous study shows that selective inhibition of ACAT2 significantly mitigated hypercholesterolaemia and atherosclerosis in mouse models. Therefore, the need for ACAT2 selective inhibitors becomes particularly urgent. In this study, we established a multilayer virtual screening workflow and subjected biologically evaluated representative compounds to enzyme inhibitory assays. The experimental results indicated that the two compounds, STL565001 (inhibition rate at 25 μM: 75.7 ± 27.8%, selectivity = 6) and STL528213 (inhibition rate at 25 μM: 87.8 ± 12.4%, selectivity = 13), demonstrated robust activity against ACAT2, displaying greater selectivity for ACAT2 than for ACAT1. The molecular mechanisms governing the inhibitory activities of the selected compounds were systematically elucidated using computational approaches. In addition, hotspot residues in ACAT2 that are crucial for ligand binding were successfully identified. In summary, we devised a multilayer screening scheme to expeditiously and efficiently identify compounds with enzyme inhibitory activity, offering novel scaffolds for subsequent drug design centred on ACAT2 targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
10.70%
发文量
195
审稿时长
4-8 weeks
期刊介绍: Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research. The journal’s focus includes current developments in: Enzymology; Cell biology; Chemical biology; Microbiology; Physiology; Pharmacology leading to drug design; Molecular recognition processes; Distribution and metabolism of biologically active compounds.
期刊最新文献
Evaluation of N-alkyl isatins and indoles as acetylcholinesterase and butyrylcholinesterase inhibitors. Identification of putative allosteric inhibitors of BCKDK via virtual screening and biological evaluation. Novel dual-targeting inhibitors of NSD2 and HDAC2 for the treatment of liver cancer: structure-based virtual screening, molecular dynamics simulation, and in vitro and in vivo biological activity evaluations. Searching for novel MDM2/MDMX dual inhibitors through a drug repurposing approach. Suppression of lipopolysaccharide-induced COX-2 expression via p38MAPK, JNK, and C/EBPβ phosphorylation inhibition by furomagydarin A, a benzofuran glycoside from Magydaris pastinacea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1