Zhihua Zhang, Zhenwei Li, Shuyang Li, Bing Xiong, You Zhou, Chaohong Shi
{"title":"高压氧治疗中重度脑外伤:伤后 5-8 年的疗效。","authors":"Zhihua Zhang, Zhenwei Li, Shuyang Li, Bing Xiong, You Zhou, Chaohong Shi","doi":"10.4103/mgr.MEDGASRES-D-24-00018","DOIUrl":null,"url":null,"abstract":"<p><p>The use of hyperbaric oxygen (HBO 2 ) in the field of traumatic brain injury (TBI) is becoming more widespread and increasing yearly, however there are few prognostic reports on long-term functional efficacy. The aim of this study was to assess the functional prognosis of patients with moderate-to-severe TBI 5-8 years following HBO 2 treatments and to explore the optimal HBO 2 regimen associated with prognosis, using a retrospective study. Clinical data were retrospectively collected as a baseline for patients with moderate-to-severe TBI treated with HBO 2 during inpatient rehabilitation from January 2014 to December 2017. The primary outcome measure was the Disability Rating Scale (DRS) and the secondary outcome measure was the Glasgow Outcome Scale. A total of 133 patients enrolled, with 9 (6.8%) dying, 41 (30.8%) remaining moderately disabled or worse (DRS scores 4-29), 83 (62.4%) remaining partially/mildly disabled or no disability (DRS scores 0-3). Logistic regression analysis revealed that age at injury (odds ratio (OR), 0.96; 95% confidence interval (CI), 0.92-0.99), length of intensive care unit stay (OR, 0.94; 95% CI, 0.88-0.99), and HBO 2 sessions (OR, 0.97; 95% CI, 0.95-0.99) were variables that independently influenced long-term prognosis. Cubic fitting models revealed that 14 and 21.6 sessions of HBO 2 could be effective for moderate and severe TBI, respectively. This study highlighted that HBO 2 in moderate-to-severe TBI may contribute to minimize death and reduce overall disability in the long-term. However, clinicians should be cautious of the potential risk of adverse long-term prognosis from excessive HBO 2 exposure when tailoring individualized HBO 2 regimens for patients with moderate-to-severe TBI. The study was registered on ClinicalTrials.gov (NCT05387018) on March 31, 2022.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":" ","pages":"156-163"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515069/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.\",\"authors\":\"Zhihua Zhang, Zhenwei Li, Shuyang Li, Bing Xiong, You Zhou, Chaohong Shi\",\"doi\":\"10.4103/mgr.MEDGASRES-D-24-00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of hyperbaric oxygen (HBO 2 ) in the field of traumatic brain injury (TBI) is becoming more widespread and increasing yearly, however there are few prognostic reports on long-term functional efficacy. The aim of this study was to assess the functional prognosis of patients with moderate-to-severe TBI 5-8 years following HBO 2 treatments and to explore the optimal HBO 2 regimen associated with prognosis, using a retrospective study. Clinical data were retrospectively collected as a baseline for patients with moderate-to-severe TBI treated with HBO 2 during inpatient rehabilitation from January 2014 to December 2017. The primary outcome measure was the Disability Rating Scale (DRS) and the secondary outcome measure was the Glasgow Outcome Scale. A total of 133 patients enrolled, with 9 (6.8%) dying, 41 (30.8%) remaining moderately disabled or worse (DRS scores 4-29), 83 (62.4%) remaining partially/mildly disabled or no disability (DRS scores 0-3). Logistic regression analysis revealed that age at injury (odds ratio (OR), 0.96; 95% confidence interval (CI), 0.92-0.99), length of intensive care unit stay (OR, 0.94; 95% CI, 0.88-0.99), and HBO 2 sessions (OR, 0.97; 95% CI, 0.95-0.99) were variables that independently influenced long-term prognosis. Cubic fitting models revealed that 14 and 21.6 sessions of HBO 2 could be effective for moderate and severe TBI, respectively. This study highlighted that HBO 2 in moderate-to-severe TBI may contribute to minimize death and reduce overall disability in the long-term. However, clinicians should be cautious of the potential risk of adverse long-term prognosis from excessive HBO 2 exposure when tailoring individualized HBO 2 regimens for patients with moderate-to-severe TBI. The study was registered on ClinicalTrials.gov (NCT05387018) on March 31, 2022.</p>\",\"PeriodicalId\":18559,\"journal\":{\"name\":\"Medical Gas Research\",\"volume\":\" \",\"pages\":\"156-163\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515069/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Gas Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
The use of hyperbaric oxygen (HBO 2 ) in the field of traumatic brain injury (TBI) is becoming more widespread and increasing yearly, however there are few prognostic reports on long-term functional efficacy. The aim of this study was to assess the functional prognosis of patients with moderate-to-severe TBI 5-8 years following HBO 2 treatments and to explore the optimal HBO 2 regimen associated with prognosis, using a retrospective study. Clinical data were retrospectively collected as a baseline for patients with moderate-to-severe TBI treated with HBO 2 during inpatient rehabilitation from January 2014 to December 2017. The primary outcome measure was the Disability Rating Scale (DRS) and the secondary outcome measure was the Glasgow Outcome Scale. A total of 133 patients enrolled, with 9 (6.8%) dying, 41 (30.8%) remaining moderately disabled or worse (DRS scores 4-29), 83 (62.4%) remaining partially/mildly disabled or no disability (DRS scores 0-3). Logistic regression analysis revealed that age at injury (odds ratio (OR), 0.96; 95% confidence interval (CI), 0.92-0.99), length of intensive care unit stay (OR, 0.94; 95% CI, 0.88-0.99), and HBO 2 sessions (OR, 0.97; 95% CI, 0.95-0.99) were variables that independently influenced long-term prognosis. Cubic fitting models revealed that 14 and 21.6 sessions of HBO 2 could be effective for moderate and severe TBI, respectively. This study highlighted that HBO 2 in moderate-to-severe TBI may contribute to minimize death and reduce overall disability in the long-term. However, clinicians should be cautious of the potential risk of adverse long-term prognosis from excessive HBO 2 exposure when tailoring individualized HBO 2 regimens for patients with moderate-to-severe TBI. The study was registered on ClinicalTrials.gov (NCT05387018) on March 31, 2022.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.