关于种群规模的估计--捕获-再捕获法与乘数基准法的比较。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2024-10-01 Epub Date: 2024-09-30 DOI:10.1177/09622802241275413
Jianing Wang, David M Kline, Laura Forsberg White
{"title":"关于种群规模的估计--捕获-再捕获法与乘数基准法的比较。","authors":"Jianing Wang, David M Kline, Laura Forsberg White","doi":"10.1177/09622802241275413","DOIUrl":null,"url":null,"abstract":"<p><p>Approaches to population size estimation are of importance across a wide spectrum of disciplines, especially when census and simple random sampling are impractical. The capture-recapture method and the multiplier-benchmark method are two commonly used approaches that use data that partially capture the target population and overlap in a known way. Due to similarities in required data structures, the approaches are often used interchangeably without a critical appraisal of the underlying assumptions, especially in the two-sample case. Here, we describe the similarities and differences of the sampling mechanisms and assumptions underlying both approaches. We emphasize that the capture-recapture method assumes data sources as random samples and describes two-way inclusion histories, while in multiplier-benchmark method, one source captures a fixed sub-population, and the one-way inclusion histories are modeled. We also discuss the implications of these differences through simulation and real data to guide the choice of method in practice. A careful study of the data structures, relationships, and data generation processes is crucial for assessing the appropriateness of using these methods.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1818-1835"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the estimation of population size-A comparison of capture-recapture and multiplier-benchmark methods.\",\"authors\":\"Jianing Wang, David M Kline, Laura Forsberg White\",\"doi\":\"10.1177/09622802241275413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Approaches to population size estimation are of importance across a wide spectrum of disciplines, especially when census and simple random sampling are impractical. The capture-recapture method and the multiplier-benchmark method are two commonly used approaches that use data that partially capture the target population and overlap in a known way. Due to similarities in required data structures, the approaches are often used interchangeably without a critical appraisal of the underlying assumptions, especially in the two-sample case. Here, we describe the similarities and differences of the sampling mechanisms and assumptions underlying both approaches. We emphasize that the capture-recapture method assumes data sources as random samples and describes two-way inclusion histories, while in multiplier-benchmark method, one source captures a fixed sub-population, and the one-way inclusion histories are modeled. We also discuss the implications of these differences through simulation and real data to guide the choice of method in practice. A careful study of the data structures, relationships, and data generation processes is crucial for assessing the appropriateness of using these methods.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"1818-1835\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802241275413\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241275413","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

人口规模估算方法在众多学科中都很重要,尤其是在人口普查和简单随机抽样不切实际的情况下。捕获-再捕获法和乘数-基准法是两种常用的方法,它们使用的数据部分捕获了目标人口,并以已知的方式重叠。由于所需的数据结构相似,这两种方法经常被交替使用,而不对其基本假设进行批判性评估,尤其是在两个样本的情况下。在此,我们将介绍这两种方法的取样机制和基本假设的异同。我们强调,捕获-再捕获法将数据源假定为随机样本,并描述了双向包含历史;而在乘数基准法中,一个数据源捕获一个固定的子总体,并对单向包含历史进行建模。我们还通过模拟和真实数据讨论了这些差异的影响,以指导实践中方法的选择。仔细研究数据结构、关系和数据生成过程对于评估使用这些方法是否合适至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the estimation of population size-A comparison of capture-recapture and multiplier-benchmark methods.

Approaches to population size estimation are of importance across a wide spectrum of disciplines, especially when census and simple random sampling are impractical. The capture-recapture method and the multiplier-benchmark method are two commonly used approaches that use data that partially capture the target population and overlap in a known way. Due to similarities in required data structures, the approaches are often used interchangeably without a critical appraisal of the underlying assumptions, especially in the two-sample case. Here, we describe the similarities and differences of the sampling mechanisms and assumptions underlying both approaches. We emphasize that the capture-recapture method assumes data sources as random samples and describes two-way inclusion histories, while in multiplier-benchmark method, one source captures a fixed sub-population, and the one-way inclusion histories are modeled. We also discuss the implications of these differences through simulation and real data to guide the choice of method in practice. A careful study of the data structures, relationships, and data generation processes is crucial for assessing the appropriateness of using these methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
An optimal exact confidence interval for the difference of two independent binomial proportions. Covariate-adjusted response-adaptive designs for semiparametric survival models. Model-based optimal randomization procedure for treatment-covariate interaction tests. LASSO-type instrumental variable selection methods with an application to Mendelian randomization. Estimating an adjusted risk difference in a cluster randomized trial with individual-level analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1