Adrian J T Teo, Siu-Kin Ng, Kaydeson Khoo, Sunny Hei Wong, King Ho Holden Li
{"title":"微流控胃肠道细胞培养技术--过去十年的进步。","authors":"Adrian J T Teo, Siu-Kin Ng, Kaydeson Khoo, Sunny Hei Wong, King Ho Holden Li","doi":"10.3390/bios14090449","DOIUrl":null,"url":null,"abstract":"<p><p>Gastrointestinal cell culture technology has evolved in the past decade with the integration of microfluidic technologies, bringing advantages with greater selectivity and cost effectiveness. Herein, these technologies are sorted into three categories, namely the cell-culture insert devices, conventional microfluidic devices, and 3D-printed microfluidic devices. Each category is discussed in brief with improvements also discussed here. Introduction of different companies and applications derived from each are also provided to encourage uptake. Subsequently, future perspectives of integrating microfluidics with trending topics like stool-derived in vitro communities and gut-immune-tumor axis investigations are discussed. Insights on modular microfluidics and its implications on gastrointestinal cell cultures are also discussed here. Future perspectives on point-of-care (POC) applications in relations to gastrointestinal microfluidic devices are also discussed here. In conclusion, this review presents an introduction of each microfluidic platform with an insight into the greater contribution of microfluidics in gastrointestinal cell cultures.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429516/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microfluidic Gastrointestinal Cell Culture Technologies-Improvements in the Past Decade.\",\"authors\":\"Adrian J T Teo, Siu-Kin Ng, Kaydeson Khoo, Sunny Hei Wong, King Ho Holden Li\",\"doi\":\"10.3390/bios14090449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gastrointestinal cell culture technology has evolved in the past decade with the integration of microfluidic technologies, bringing advantages with greater selectivity and cost effectiveness. Herein, these technologies are sorted into three categories, namely the cell-culture insert devices, conventional microfluidic devices, and 3D-printed microfluidic devices. Each category is discussed in brief with improvements also discussed here. Introduction of different companies and applications derived from each are also provided to encourage uptake. Subsequently, future perspectives of integrating microfluidics with trending topics like stool-derived in vitro communities and gut-immune-tumor axis investigations are discussed. Insights on modular microfluidics and its implications on gastrointestinal cell cultures are also discussed here. Future perspectives on point-of-care (POC) applications in relations to gastrointestinal microfluidic devices are also discussed here. In conclusion, this review presents an introduction of each microfluidic platform with an insight into the greater contribution of microfluidics in gastrointestinal cell cultures.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429516/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios14090449\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14090449","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Microfluidic Gastrointestinal Cell Culture Technologies-Improvements in the Past Decade.
Gastrointestinal cell culture technology has evolved in the past decade with the integration of microfluidic technologies, bringing advantages with greater selectivity and cost effectiveness. Herein, these technologies are sorted into three categories, namely the cell-culture insert devices, conventional microfluidic devices, and 3D-printed microfluidic devices. Each category is discussed in brief with improvements also discussed here. Introduction of different companies and applications derived from each are also provided to encourage uptake. Subsequently, future perspectives of integrating microfluidics with trending topics like stool-derived in vitro communities and gut-immune-tumor axis investigations are discussed. Insights on modular microfluidics and its implications on gastrointestinal cell cultures are also discussed here. Future perspectives on point-of-care (POC) applications in relations to gastrointestinal microfluidic devices are also discussed here. In conclusion, this review presents an introduction of each microfluidic platform with an insight into the greater contribution of microfluidics in gastrointestinal cell cultures.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.