Xu Zhang , Sheng Zhang , Huajun Zhang , Chenyang Liu , Yue Zhou , Chengqian Dong , Xiguang Gao , Fang Wang , Yingdong Song
{"title":"考虑到剪切-压缩耦合的超弹性模型,用于三维正交复合预成型件的成型模拟","authors":"Xu Zhang , Sheng Zhang , Huajun Zhang , Chenyang Liu , Yue Zhou , Chengqian Dong , Xiguang Gao , Fang Wang , Yingdong Song","doi":"10.1016/j.compscitech.2024.110884","DOIUrl":null,"url":null,"abstract":"<div><div>The shear-compression coupling phenomenon is vital in the forming process of complex 3D woven composite components, but has not been effectively considered in existing macroscopic material models. A hyperelastic material model considering shear-compression coupling is developed here. Firstly, in-plane shear tests on pre-compressed specimens and compression tests on pre-sheared specimens were carried out, respectively. The results show that pre-compression can hinder and promote the in-plane shear deformation before and after shear locking occurs in the fabric, respectively. In-plane shear can contribute to compression. Then, a nonlinear hyperelastic constitutive model is presented and implemented in an Abaqus/Explicit user subroutine. Finally, a simulation study of the hemispherical forming of 3D orthogonal woven fabric was conducted using this model. The simulation results considering shear-compression coupling show more accurate in-plane shear angles and edge shapes compared to those without considering coupling. Moreover, since the shear-compression coupling is considered, the friction between the fabric and the tool needs to be reasonably discussed in the moulding simulation.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110884"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hyperelastic model considering the coupling of shear-compression for the forming simulation of 3D orthogonal composite preforms\",\"authors\":\"Xu Zhang , Sheng Zhang , Huajun Zhang , Chenyang Liu , Yue Zhou , Chengqian Dong , Xiguang Gao , Fang Wang , Yingdong Song\",\"doi\":\"10.1016/j.compscitech.2024.110884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The shear-compression coupling phenomenon is vital in the forming process of complex 3D woven composite components, but has not been effectively considered in existing macroscopic material models. A hyperelastic material model considering shear-compression coupling is developed here. Firstly, in-plane shear tests on pre-compressed specimens and compression tests on pre-sheared specimens were carried out, respectively. The results show that pre-compression can hinder and promote the in-plane shear deformation before and after shear locking occurs in the fabric, respectively. In-plane shear can contribute to compression. Then, a nonlinear hyperelastic constitutive model is presented and implemented in an Abaqus/Explicit user subroutine. Finally, a simulation study of the hemispherical forming of 3D orthogonal woven fabric was conducted using this model. The simulation results considering shear-compression coupling show more accurate in-plane shear angles and edge shapes compared to those without considering coupling. Moreover, since the shear-compression coupling is considered, the friction between the fabric and the tool needs to be reasonably discussed in the moulding simulation.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"258 \",\"pages\":\"Article 110884\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824004548\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004548","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
A hyperelastic model considering the coupling of shear-compression for the forming simulation of 3D orthogonal composite preforms
The shear-compression coupling phenomenon is vital in the forming process of complex 3D woven composite components, but has not been effectively considered in existing macroscopic material models. A hyperelastic material model considering shear-compression coupling is developed here. Firstly, in-plane shear tests on pre-compressed specimens and compression tests on pre-sheared specimens were carried out, respectively. The results show that pre-compression can hinder and promote the in-plane shear deformation before and after shear locking occurs in the fabric, respectively. In-plane shear can contribute to compression. Then, a nonlinear hyperelastic constitutive model is presented and implemented in an Abaqus/Explicit user subroutine. Finally, a simulation study of the hemispherical forming of 3D orthogonal woven fabric was conducted using this model. The simulation results considering shear-compression coupling show more accurate in-plane shear angles and edge shapes compared to those without considering coupling. Moreover, since the shear-compression coupling is considered, the friction between the fabric and the tool needs to be reasonably discussed in the moulding simulation.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.