基于 CaO/ZSM-5 双催化剂的小麦秸秆催化热解与酸洗和预处理以提高生物油中的芳烃产量

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2024-09-19 DOI:10.1016/j.joei.2024.101836
Chenyang Sun, Zhen Zhou, Hong Tian, Shan Cheng, Hengyu He, Binbin Chen
{"title":"基于 CaO/ZSM-5 双催化剂的小麦秸秆催化热解与酸洗和预处理以提高生物油中的芳烃产量","authors":"Chenyang Sun,&nbsp;Zhen Zhou,&nbsp;Hong Tian,&nbsp;Shan Cheng,&nbsp;Hengyu He,&nbsp;Binbin Chen","doi":"10.1016/j.joei.2024.101836","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the catalytic pyrolysis integrating combined pretreatment (acid washing and torrefaction) and dual catalysts was adopted to improve the quality of bio-oil and the selectivity of aromatic hydrocarbons. Combined pretreatment is a highly effective method to improve the quality of biomass feedstock. It was capable of the removal of alkali and alkaline earth metals from wheat straw, with a K removal rate of 97.79 %. Under the combined pretreatment, the aromatic hydrocarbon content in bio-oil increased to 68.8 % using the ZSM-5 catalyst alone. Compared with ZSM-5, CaO could remove part of the oxygenated functional groups and had a better acid removal effect, but the aromatic hydrocarbon yield was low to 7.95 %. After combined pretreatment using simulated aqueous phase bio-oil for acid washing, catalytic pyrolysis using CaO/ZSM-5 dual catalysts greatly enhanced the quality of the bio-oil. The oxygenated compounds content was reduced to 17.58 %, and the total hydrocarbon yield was increased to 82.42 %, especially the aromatic hydrocarbons yield was increased to 79.91 %, of which the monocyclic aromatic hydrocarbons were as high as 68.38 %, and the benzene, toluene, and xylene content reaching 49.39 %. Thus, integrating dual catalysts (CaO/ZSM-5) with combined pretreatment can effectively increase the aromatic yield for producing high-quality bio-oil.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101836"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic pyrolysis of wheat straw based on dual catalyst CaO/ZSM-5 with acid washing and torrefaction pretreatment to enhance aromatic yield in bio-oils\",\"authors\":\"Chenyang Sun,&nbsp;Zhen Zhou,&nbsp;Hong Tian,&nbsp;Shan Cheng,&nbsp;Hengyu He,&nbsp;Binbin Chen\",\"doi\":\"10.1016/j.joei.2024.101836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the catalytic pyrolysis integrating combined pretreatment (acid washing and torrefaction) and dual catalysts was adopted to improve the quality of bio-oil and the selectivity of aromatic hydrocarbons. Combined pretreatment is a highly effective method to improve the quality of biomass feedstock. It was capable of the removal of alkali and alkaline earth metals from wheat straw, with a K removal rate of 97.79 %. Under the combined pretreatment, the aromatic hydrocarbon content in bio-oil increased to 68.8 % using the ZSM-5 catalyst alone. Compared with ZSM-5, CaO could remove part of the oxygenated functional groups and had a better acid removal effect, but the aromatic hydrocarbon yield was low to 7.95 %. After combined pretreatment using simulated aqueous phase bio-oil for acid washing, catalytic pyrolysis using CaO/ZSM-5 dual catalysts greatly enhanced the quality of the bio-oil. The oxygenated compounds content was reduced to 17.58 %, and the total hydrocarbon yield was increased to 82.42 %, especially the aromatic hydrocarbons yield was increased to 79.91 %, of which the monocyclic aromatic hydrocarbons were as high as 68.38 %, and the benzene, toluene, and xylene content reaching 49.39 %. Thus, integrating dual catalysts (CaO/ZSM-5) with combined pretreatment can effectively increase the aromatic yield for producing high-quality bio-oil.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"117 \",\"pages\":\"Article 101836\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124003143\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003143","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文采用联合预处理(酸洗和高温分解)和双催化剂的催化热解方法来提高生物油的质量和芳香烃的选择性。联合预处理是提高生物质原料质量的一种高效方法。它能够去除小麦秸秆中的碱金属和碱土金属,钾的去除率为 97.79%。在联合预处理中,单独使用 ZSM-5 催化剂,生物油中的芳香烃含量增加到 68.8%。与 ZSM-5 相比,CaO 可以去除部分含氧官能团,脱酸效果更好,但芳烃产率较低,仅为 7.95%。在使用模拟水相生物油进行酸洗的联合预处理后,使用 CaO/ZSM-5 双催化剂进行催化热解可大大提高生物油的质量。含氧化合物含量降低到 17.58%,总烃收率提高到 82.42%,尤其是芳香烃收率提高到 79.91%,其中单环芳香烃高达 68.38%,苯、甲苯和二甲苯含量达到 49.39%。因此,将双催化剂(CaO/ZSM-5)与联合预处理相结合,可有效提高生产优质生物油的芳烃产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Catalytic pyrolysis of wheat straw based on dual catalyst CaO/ZSM-5 with acid washing and torrefaction pretreatment to enhance aromatic yield in bio-oils
In this paper, the catalytic pyrolysis integrating combined pretreatment (acid washing and torrefaction) and dual catalysts was adopted to improve the quality of bio-oil and the selectivity of aromatic hydrocarbons. Combined pretreatment is a highly effective method to improve the quality of biomass feedstock. It was capable of the removal of alkali and alkaline earth metals from wheat straw, with a K removal rate of 97.79 %. Under the combined pretreatment, the aromatic hydrocarbon content in bio-oil increased to 68.8 % using the ZSM-5 catalyst alone. Compared with ZSM-5, CaO could remove part of the oxygenated functional groups and had a better acid removal effect, but the aromatic hydrocarbon yield was low to 7.95 %. After combined pretreatment using simulated aqueous phase bio-oil for acid washing, catalytic pyrolysis using CaO/ZSM-5 dual catalysts greatly enhanced the quality of the bio-oil. The oxygenated compounds content was reduced to 17.58 %, and the total hydrocarbon yield was increased to 82.42 %, especially the aromatic hydrocarbons yield was increased to 79.91 %, of which the monocyclic aromatic hydrocarbons were as high as 68.38 %, and the benzene, toluene, and xylene content reaching 49.39 %. Thus, integrating dual catalysts (CaO/ZSM-5) with combined pretreatment can effectively increase the aromatic yield for producing high-quality bio-oil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Editorial Board Synergistic recovery of renewable hydrocarbon resources via co-pyrolysis of non-edible linseed and waste polypropylene: A study on influence of plastic on oil production and their utilization as a fuel for IC engine Comprehensive performance investigation of inexpensive oxygen carrier in chemical looping gasification of coal Cerium-induced modification of acid-base sites in Ni-zeolite catalysts for improved dry reforming of methane The impact of ignition and activation energy distribution on the combustion and emission characteristics of diesel-ammonia-natural gas engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1