开发便携式煤岩装药监测仪器及其在岩爆控制中的应用

Gang Wang , Hongrui Zhao , Lianpeng Dai , Haojun Wang , Jinguo Lyu , Jianzhuo Zhang
{"title":"开发便携式煤岩装药监测仪器及其在岩爆控制中的应用","authors":"Gang Wang ,&nbsp;Hongrui Zhao ,&nbsp;Lianpeng Dai ,&nbsp;Haojun Wang ,&nbsp;Jinguo Lyu ,&nbsp;Jianzhuo Zhang","doi":"10.1016/j.ghm.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>Effective monitoring techniques and equipment are essential for the prevention and control of coal and rock dynamic disasters such as rockburst. Based on the fact that there is charge generation during deformation and rupture of coal rock body and the charge signals contain a large amount of information about the mechanical process of deformation and rupture of coal rock, the rockburst charge sensing monitoring technology has been formed. In order to improve the charge sensing technology for monitoring and early warning of rockburst disasters, this paper develops a new generation of portable coal rock charge monitoring instrument on the basis of the original instrument and carries out laboratory and underground field application. The primary advancement involves enhancing the external structure of the sensor and increasing the charge sensing area, which can more comprehensively capture the charge signals from the loaded rupture of the coal rock body. The overall structure of the data acquisition instrument has been improved, the monitoring channels have been increased, and the function of displaying the monitoring data curve has been added, so that the coal and rock body force status can be grasped in time. The results of the experimental study show that the abnormal charge signals can be monitored during the rupture process of rock samples under loading, and the monitored charge signals are in good agreement with the sudden change of stress in the rock samples and the formation of crack extension. There is a precursor charge signal before the stress mutation, and the larger the loading rate is, the earlier the precursor charge signal appears. The charge monitoring instrument can monitor the charge signal of the coal seam roadway under strong mining pressure. In the zone of elevated overburden pressure, the amount of induced charge is large, and anomalously high value charge signals can be monitored when a coal shot occurs. The change trend of the charge at different measuring points of strike and inclination has a good consistency with the distribution of overrunning support pressure and lateral support pressure, which can reflect the stress distribution and the degree of stress concentration of the coal body through the size and location of the charge, foster early warning and analysis of rockburst, and provide target guidance for the prevention and control of rockburst.</div></div>","PeriodicalId":100580,"journal":{"name":"Geohazard Mechanics","volume":"2 3","pages":"Pages 216-224"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a portable coal rock charge monitoring instrument and its application for rockburst control\",\"authors\":\"Gang Wang ,&nbsp;Hongrui Zhao ,&nbsp;Lianpeng Dai ,&nbsp;Haojun Wang ,&nbsp;Jinguo Lyu ,&nbsp;Jianzhuo Zhang\",\"doi\":\"10.1016/j.ghm.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective monitoring techniques and equipment are essential for the prevention and control of coal and rock dynamic disasters such as rockburst. Based on the fact that there is charge generation during deformation and rupture of coal rock body and the charge signals contain a large amount of information about the mechanical process of deformation and rupture of coal rock, the rockburst charge sensing monitoring technology has been formed. In order to improve the charge sensing technology for monitoring and early warning of rockburst disasters, this paper develops a new generation of portable coal rock charge monitoring instrument on the basis of the original instrument and carries out laboratory and underground field application. The primary advancement involves enhancing the external structure of the sensor and increasing the charge sensing area, which can more comprehensively capture the charge signals from the loaded rupture of the coal rock body. The overall structure of the data acquisition instrument has been improved, the monitoring channels have been increased, and the function of displaying the monitoring data curve has been added, so that the coal and rock body force status can be grasped in time. The results of the experimental study show that the abnormal charge signals can be monitored during the rupture process of rock samples under loading, and the monitored charge signals are in good agreement with the sudden change of stress in the rock samples and the formation of crack extension. There is a precursor charge signal before the stress mutation, and the larger the loading rate is, the earlier the precursor charge signal appears. The charge monitoring instrument can monitor the charge signal of the coal seam roadway under strong mining pressure. In the zone of elevated overburden pressure, the amount of induced charge is large, and anomalously high value charge signals can be monitored when a coal shot occurs. The change trend of the charge at different measuring points of strike and inclination has a good consistency with the distribution of overrunning support pressure and lateral support pressure, which can reflect the stress distribution and the degree of stress concentration of the coal body through the size and location of the charge, foster early warning and analysis of rockburst, and provide target guidance for the prevention and control of rockburst.</div></div>\",\"PeriodicalId\":100580,\"journal\":{\"name\":\"Geohazard Mechanics\",\"volume\":\"2 3\",\"pages\":\"Pages 216-224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geohazard Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949741824000542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohazard Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949741824000542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有效的监测技术和设备对于预防和控制岩爆等煤岩动力灾害至关重要。基于煤岩体变形破裂过程中会产生电荷,而电荷信号中蕴含着煤岩变形破裂力学过程的大量信息,形成了岩爆电荷传感监测技术。为了完善岩爆灾害监测预警的电荷传感技术,本文在原有仪器的基础上,研制了新一代便携式煤岩电荷监测仪器,并进行了实验室和井下现场应用。其主要进步在于改进了传感器的外部结构,增大了电荷感应面积,可以更全面地捕捉煤岩体加载破裂产生的电荷信号。改进了数据采集仪的整体结构,增加了监测通道,并增加了监测数据曲线显示功能,以便及时掌握煤岩体受力状况。实验研究结果表明,在岩样受载破裂过程中,可以监测到异常电荷信号,监测到的电荷信号与岩样应力突变、裂纹扩展形成的情况吻合较好。在应力突变之前有一个前驱电荷信号,加载速率越大,前驱电荷信号出现得越早。电荷监测仪可监测强采压下煤层巷道的电荷信号。在覆岩压力较高的区域,诱导电荷量较大,当发生喷煤时,可监测到异常高值的电荷信号。不同走向和倾角测点的电荷量变化趋势与超前支护压力和侧向支护压力的分布具有良好的一致性,可以通过电荷量的大小和位置反映煤体的应力分布和应力集中程度,促进岩爆预警和分析,为岩爆防治提供针对性指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a portable coal rock charge monitoring instrument and its application for rockburst control
Effective monitoring techniques and equipment are essential for the prevention and control of coal and rock dynamic disasters such as rockburst. Based on the fact that there is charge generation during deformation and rupture of coal rock body and the charge signals contain a large amount of information about the mechanical process of deformation and rupture of coal rock, the rockburst charge sensing monitoring technology has been formed. In order to improve the charge sensing technology for monitoring and early warning of rockburst disasters, this paper develops a new generation of portable coal rock charge monitoring instrument on the basis of the original instrument and carries out laboratory and underground field application. The primary advancement involves enhancing the external structure of the sensor and increasing the charge sensing area, which can more comprehensively capture the charge signals from the loaded rupture of the coal rock body. The overall structure of the data acquisition instrument has been improved, the monitoring channels have been increased, and the function of displaying the monitoring data curve has been added, so that the coal and rock body force status can be grasped in time. The results of the experimental study show that the abnormal charge signals can be monitored during the rupture process of rock samples under loading, and the monitored charge signals are in good agreement with the sudden change of stress in the rock samples and the formation of crack extension. There is a precursor charge signal before the stress mutation, and the larger the loading rate is, the earlier the precursor charge signal appears. The charge monitoring instrument can monitor the charge signal of the coal seam roadway under strong mining pressure. In the zone of elevated overburden pressure, the amount of induced charge is large, and anomalously high value charge signals can be monitored when a coal shot occurs. The change trend of the charge at different measuring points of strike and inclination has a good consistency with the distribution of overrunning support pressure and lateral support pressure, which can reflect the stress distribution and the degree of stress concentration of the coal body through the size and location of the charge, foster early warning and analysis of rockburst, and provide target guidance for the prevention and control of rockburst.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Optimization design method of 2D+3D slope shape for landslide prevention in open-pit coal mine Stability prediction of roadway surrounding rock using INGO-RF Leveraging artificial neural networks for robust landslide susceptibility mapping: A geospatial modeling approach in the ecologically sensitive Nilgiri District, Tamil Nadu Prediction of coal and gas outburst hazard using kernel principal component analysis and an enhanced extreme learning machine approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1