通过混凝-絮凝和过滤去除合成浴室中水污染物的适用方法

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Environmental Chemical Engineering Pub Date : 2024-09-25 DOI:10.1016/j.jece.2024.114250
Andrea Szabolcsik-Izbéki , Ildikó Bodnár , István Fábián
{"title":"通过混凝-絮凝和过滤去除合成浴室中水污染物的适用方法","authors":"Andrea Szabolcsik-Izbéki ,&nbsp;Ildikó Bodnár ,&nbsp;István Fábián","doi":"10.1016/j.jece.2024.114250","DOIUrl":null,"url":null,"abstract":"<div><div>It has been demonstrated that treated bathroom greywater (TBGW) is a useful substitute for fresh water for non-potable applications in households. Reuse of TBGW for irrigation, toilet flushing, car washing etc. offers a good opportunity to save drinking water and meet the sustainable development goals (SDGs). In this study, synthetic bathroom greywater (SBGW) was compiled in a controlled manner and used as a substitute for bathroom GW. Detailed statistical analysis also was performed to confirm the similarity between real and synthetic BGWs. SBGW is suitable for testing efficiency of applied treatment methods. It was confirmed that coagulation–flocculation with iron(III) chloride and sand filtration was the most effective method of the tested 7 systems. The best and affordable treatment combination generates good-quality treated SBGW (TSBGW) (pH = 7.54 ± 0.29, TURB = 0.54 ± 0.49 NTU, BOD<sub>5</sub> = 21 ± 10 mgL<sup>−1</sup>, COD = 32 ± 11 mgL<sup>−1</sup>, and TOC = 12.7 ± 6.7 mgL<sup>−1</sup>) for different non-potable purposes by complying with the regulated limit values for reuse. The elemental analysis of raw, TSBGW and tap water (TW) samples by MP-AES method provided further support for safe recycling. This study leads to the conclusion that the generation of TBGW by fit-for-purpose treatment can effectively meet the circular economy goals at household level. The recycling of GW is of limited importance in the European Union (EU) and legal regulations are not available in many countries. This study provides novel support for regulating the reuse of water in Eastern European countries.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114250"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The removal of pollutants from synthetic bathroom greywater by coagulation-flocculation and filtration as a fit-for-purpose method\",\"authors\":\"Andrea Szabolcsik-Izbéki ,&nbsp;Ildikó Bodnár ,&nbsp;István Fábián\",\"doi\":\"10.1016/j.jece.2024.114250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It has been demonstrated that treated bathroom greywater (TBGW) is a useful substitute for fresh water for non-potable applications in households. Reuse of TBGW for irrigation, toilet flushing, car washing etc. offers a good opportunity to save drinking water and meet the sustainable development goals (SDGs). In this study, synthetic bathroom greywater (SBGW) was compiled in a controlled manner and used as a substitute for bathroom GW. Detailed statistical analysis also was performed to confirm the similarity between real and synthetic BGWs. SBGW is suitable for testing efficiency of applied treatment methods. It was confirmed that coagulation–flocculation with iron(III) chloride and sand filtration was the most effective method of the tested 7 systems. The best and affordable treatment combination generates good-quality treated SBGW (TSBGW) (pH = 7.54 ± 0.29, TURB = 0.54 ± 0.49 NTU, BOD<sub>5</sub> = 21 ± 10 mgL<sup>−1</sup>, COD = 32 ± 11 mgL<sup>−1</sup>, and TOC = 12.7 ± 6.7 mgL<sup>−1</sup>) for different non-potable purposes by complying with the regulated limit values for reuse. The elemental analysis of raw, TSBGW and tap water (TW) samples by MP-AES method provided further support for safe recycling. This study leads to the conclusion that the generation of TBGW by fit-for-purpose treatment can effectively meet the circular economy goals at household level. The recycling of GW is of limited importance in the European Union (EU) and legal regulations are not available in many countries. This study provides novel support for regulating the reuse of water in Eastern European countries.</div></div>\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":\"12 6\",\"pages\":\"Article 114250\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213343724023819\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724023819","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

实践证明,经过处理的浴室中水(TBGW)可替代淡水用于家庭非饮用水应用。将浴室中水回用至灌溉、冲厕、洗车等用途为节约饮用水和实现可持续发展目标(SDGs)提供了良机。在本研究中,我们以受控方式编制了合成浴室中水(SBGW),并将其用作浴室中水的替代品。此外,还进行了详细的统计分析,以确认真实和合成浴室中水之间的相似性。SBGW 适用于测试应用处理方法的效率。结果表明,使用氯化铁(III)进行混凝絮凝和砂滤是所测试的 7 种系统中最有效的方法。最佳且经济实惠的处理组合可产生优质的处理后 SBGW(TSBGW)(pH = 7.54 ± 0.29,TURB = 0.54 ± 0.49 NTU,BOD5 = 21 ± 10 mgL-1,COD = 32 ± 11 mgL-1,TOC = 12.7 ± 6.7 mgL-1),用于不同的非饮用水用途,符合规定的再利用限值。采用 MP-AES 方法对原水、TSBGW 和自来水 (TW) 样品进行的元素分析进一步证明了回收利用的安全性。这项研究得出的结论是,通过适合目的的处理方法产生自来水,可有效实现家庭层面的循环经济目标。在欧盟(EU),GW 回收利用的重要性有限,许多国家都没有相关的法律法规。本研究为规范东欧国家的水再利用提供了新的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The removal of pollutants from synthetic bathroom greywater by coagulation-flocculation and filtration as a fit-for-purpose method
It has been demonstrated that treated bathroom greywater (TBGW) is a useful substitute for fresh water for non-potable applications in households. Reuse of TBGW for irrigation, toilet flushing, car washing etc. offers a good opportunity to save drinking water and meet the sustainable development goals (SDGs). In this study, synthetic bathroom greywater (SBGW) was compiled in a controlled manner and used as a substitute for bathroom GW. Detailed statistical analysis also was performed to confirm the similarity between real and synthetic BGWs. SBGW is suitable for testing efficiency of applied treatment methods. It was confirmed that coagulation–flocculation with iron(III) chloride and sand filtration was the most effective method of the tested 7 systems. The best and affordable treatment combination generates good-quality treated SBGW (TSBGW) (pH = 7.54 ± 0.29, TURB = 0.54 ± 0.49 NTU, BOD5 = 21 ± 10 mgL−1, COD = 32 ± 11 mgL−1, and TOC = 12.7 ± 6.7 mgL−1) for different non-potable purposes by complying with the regulated limit values for reuse. The elemental analysis of raw, TSBGW and tap water (TW) samples by MP-AES method provided further support for safe recycling. This study leads to the conclusion that the generation of TBGW by fit-for-purpose treatment can effectively meet the circular economy goals at household level. The recycling of GW is of limited importance in the European Union (EU) and legal regulations are not available in many countries. This study provides novel support for regulating the reuse of water in Eastern European countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
期刊最新文献
Research progress of simultaneous nitrogen and phosphorus removal adsorbents in wastewater treatment Recent progress of piezoelectric materials applied in photocatalytic CO2 reduction: A review Recent advances and future prospects of MXene-based photocatalysts in environmental remediations Layered double hydroxides as versatile materials for detoxification of hexavalent chromium: Mechanism, kinetics, and environmental factors Pyruvate-formate lyase and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1