通过增材制造和生长泡沫聚氨酯制造出带有微石墨填料的混合晶格结构

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Composites Part C Open Access Pub Date : 2024-10-01 DOI:10.1016/j.jcomc.2024.100516
Fefria Tanbar , Alvin Dio Nugroho , Ariyana Dwiputra Nugraha , Seno Darmanto , Djarot Widagdo , Gil N.C. Santos , Muhammad Akhsin Muflikhun
{"title":"通过增材制造和生长泡沫聚氨酯制造出带有微石墨填料的混合晶格结构","authors":"Fefria Tanbar ,&nbsp;Alvin Dio Nugroho ,&nbsp;Ariyana Dwiputra Nugraha ,&nbsp;Seno Darmanto ,&nbsp;Djarot Widagdo ,&nbsp;Gil N.C. Santos ,&nbsp;Muhammad Akhsin Muflikhun","doi":"10.1016/j.jcomc.2024.100516","DOIUrl":null,"url":null,"abstract":"<div><div>The utilisation of lightweight structures is a common practice across a range of disciplines, including the construction of light steel frames, sandwich panels, and transportation infrastructure, among others. The advantages of lightweight structures include design flexibility, weight reduction, and the sustainability of materials that can be easily recycled. However, these advantages also present significant weaknesses. Compared to solid materials with compact weight, lightweight structures do not have the same characteristics. With the reduction in material weight, the strength of the lightweight structure decreases significantly compared to solid materials. In this study, the lightweight structure was made using additive manufacturing and reinforced with solid Composite Polyurethane Foam reinforced with graphite filler expanded into the lightweight structure. The results showed that in the compression test, the mixture with 2 % graphite filler had the highest value of 2.5 kN. The highest hardness test on the specimen with a 2 % graphite mixture was 19.8 HA. FT-IR testing showed that the carbon bonds from graphite in the 2 % specimen had the highest intensity. The test results showed that the addition of Polyurethane Foam into the structure could enhance material strength effectively without adding significant material weight.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"15 ","pages":"Article 100516"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane\",\"authors\":\"Fefria Tanbar ,&nbsp;Alvin Dio Nugroho ,&nbsp;Ariyana Dwiputra Nugraha ,&nbsp;Seno Darmanto ,&nbsp;Djarot Widagdo ,&nbsp;Gil N.C. Santos ,&nbsp;Muhammad Akhsin Muflikhun\",\"doi\":\"10.1016/j.jcomc.2024.100516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The utilisation of lightweight structures is a common practice across a range of disciplines, including the construction of light steel frames, sandwich panels, and transportation infrastructure, among others. The advantages of lightweight structures include design flexibility, weight reduction, and the sustainability of materials that can be easily recycled. However, these advantages also present significant weaknesses. Compared to solid materials with compact weight, lightweight structures do not have the same characteristics. With the reduction in material weight, the strength of the lightweight structure decreases significantly compared to solid materials. In this study, the lightweight structure was made using additive manufacturing and reinforced with solid Composite Polyurethane Foam reinforced with graphite filler expanded into the lightweight structure. The results showed that in the compression test, the mixture with 2 % graphite filler had the highest value of 2.5 kN. The highest hardness test on the specimen with a 2 % graphite mixture was 19.8 HA. FT-IR testing showed that the carbon bonds from graphite in the 2 % specimen had the highest intensity. The test results showed that the addition of Polyurethane Foam into the structure could enhance material strength effectively without adding significant material weight.</div></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":\"15 \",\"pages\":\"Article 100516\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

轻质结构的应用在各个领域都很普遍,包括轻钢结构、夹芯板和交通基础设施等。轻质结构的优点包括设计灵活、重量减轻以及材料易于回收的可持续性。然而,这些优点也存在明显的缺点。与重量紧凑的固体材料相比,轻质结构不具备相同的特性。随着材料重量的减轻,轻质结构的强度与实心材料相比明显下降。本研究利用增材制造技术制作了轻质结构,并用固体复合聚氨酯泡沫增强石墨填料膨胀到轻质结构中。结果表明,在压缩试验中,含有 2% 石墨填料的混合物的压缩值最高,为 2.5 kN。含有 2% 石墨混合物的试样的最高硬度测试值为 19.8 HA。傅立叶变换红外测试表明,2% 的试样中石墨的碳键强度最高。测试结果表明,在结构中添加聚氨酯泡沫可有效提高材料强度,而不会增加大量材料重量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane
The utilisation of lightweight structures is a common practice across a range of disciplines, including the construction of light steel frames, sandwich panels, and transportation infrastructure, among others. The advantages of lightweight structures include design flexibility, weight reduction, and the sustainability of materials that can be easily recycled. However, these advantages also present significant weaknesses. Compared to solid materials with compact weight, lightweight structures do not have the same characteristics. With the reduction in material weight, the strength of the lightweight structure decreases significantly compared to solid materials. In this study, the lightweight structure was made using additive manufacturing and reinforced with solid Composite Polyurethane Foam reinforced with graphite filler expanded into the lightweight structure. The results showed that in the compression test, the mixture with 2 % graphite filler had the highest value of 2.5 kN. The highest hardness test on the specimen with a 2 % graphite mixture was 19.8 HA. FT-IR testing showed that the carbon bonds from graphite in the 2 % specimen had the highest intensity. The test results showed that the addition of Polyurethane Foam into the structure could enhance material strength effectively without adding significant material weight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
期刊最新文献
Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane Cure-induced residual stresses and viscoelastic effects in repaired wind turbine blades: Analytical-numerical investigation Bioinspired surface modification of mussel shells and their application as a biogenic filler in polypropylene composites A review of repairing heat-damaged RC beams using externally bonded- and near-surface mounted-CFRP composites Comparative analysis of delamination resistance in CFRP laminates interleaved by thermoplastic nanoparticle: Evaluating toughening mechanisms in modes I and II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1