{"title":"利用非晶态二氧化锡 TCO 层改善无铟硅异质结太阳能电池的电接触特性","authors":"Hitoshi Sai, Takashi Koida, Takuya Matsui","doi":"10.1016/j.solmat.2024.113191","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon heterojunction (SHJ) solar cells are recognized as one of the most efficient architectures in silicon-based photovoltaic devices. However, the reliance on indium (In)-based transparent conductive oxides (TCO) is anticipated to constrain their production capacity due to the critical and economically volatile nature of In. Recently, low-temperature-grown amorphous SnO<sub>2</sub> (a-SnO<sub>2</sub>) films have been explored as an earth-abundant alternative TCO material. In this study, we examine the electrical contact properties of a-SnO<sub>2</sub> layers employed as TCO layers in SHJ cells, focusing on their interaction with the underlying carrier selective contact layers. Our findings indicate that a stack of doped amorphous silicon (a-Si:H) and a-SnO<sub>2</sub> exhibits relatively high specific contact resistivity, leading to a significant reduction in the device's fill factor. To address this issue, we propose two approaches: the insertion of a thin ZnO-based TCO layer between a-Si:H and a-SnO<sub>2</sub>, and the use of nanocrystalline silicon layers in place of a-Si:H. Both approaches effectively reduce the contact resistivity, resulting in improvements in fill factor and conversion efficiency comparable to those of benchmark device with In-based TCOs. Based on these findings, we demonstrate a high-efficiency, In-free, SnO<sub>2</sub>-based SHJ cell.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113191"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved electrical contact properties in Indium-free silicon heterojunction solar cells with amorphous SnO2 TCO layers\",\"authors\":\"Hitoshi Sai, Takashi Koida, Takuya Matsui\",\"doi\":\"10.1016/j.solmat.2024.113191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Silicon heterojunction (SHJ) solar cells are recognized as one of the most efficient architectures in silicon-based photovoltaic devices. However, the reliance on indium (In)-based transparent conductive oxides (TCO) is anticipated to constrain their production capacity due to the critical and economically volatile nature of In. Recently, low-temperature-grown amorphous SnO<sub>2</sub> (a-SnO<sub>2</sub>) films have been explored as an earth-abundant alternative TCO material. In this study, we examine the electrical contact properties of a-SnO<sub>2</sub> layers employed as TCO layers in SHJ cells, focusing on their interaction with the underlying carrier selective contact layers. Our findings indicate that a stack of doped amorphous silicon (a-Si:H) and a-SnO<sub>2</sub> exhibits relatively high specific contact resistivity, leading to a significant reduction in the device's fill factor. To address this issue, we propose two approaches: the insertion of a thin ZnO-based TCO layer between a-Si:H and a-SnO<sub>2</sub>, and the use of nanocrystalline silicon layers in place of a-Si:H. Both approaches effectively reduce the contact resistivity, resulting in improvements in fill factor and conversion efficiency comparable to those of benchmark device with In-based TCOs. Based on these findings, we demonstrate a high-efficiency, In-free, SnO<sub>2</sub>-based SHJ cell.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"278 \",\"pages\":\"Article 113191\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005038\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005038","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Improved electrical contact properties in Indium-free silicon heterojunction solar cells with amorphous SnO2 TCO layers
Silicon heterojunction (SHJ) solar cells are recognized as one of the most efficient architectures in silicon-based photovoltaic devices. However, the reliance on indium (In)-based transparent conductive oxides (TCO) is anticipated to constrain their production capacity due to the critical and economically volatile nature of In. Recently, low-temperature-grown amorphous SnO2 (a-SnO2) films have been explored as an earth-abundant alternative TCO material. In this study, we examine the electrical contact properties of a-SnO2 layers employed as TCO layers in SHJ cells, focusing on their interaction with the underlying carrier selective contact layers. Our findings indicate that a stack of doped amorphous silicon (a-Si:H) and a-SnO2 exhibits relatively high specific contact resistivity, leading to a significant reduction in the device's fill factor. To address this issue, we propose two approaches: the insertion of a thin ZnO-based TCO layer between a-Si:H and a-SnO2, and the use of nanocrystalline silicon layers in place of a-Si:H. Both approaches effectively reduce the contact resistivity, resulting in improvements in fill factor and conversion efficiency comparable to those of benchmark device with In-based TCOs. Based on these findings, we demonstrate a high-efficiency, In-free, SnO2-based SHJ cell.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.