具有高效电荷转移和二氧化碳光催化转化功能的双相 TiO2(锌-四羧基酞菁)孪生 S 型异质结纳米线

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2024-09-24 DOI:10.1016/j.seppur.2024.129870
{"title":"具有高效电荷转移和二氧化碳光催化转化功能的双相 TiO2(锌-四羧基酞菁)孪生 S 型异质结纳米线","authors":"","doi":"10.1016/j.seppur.2024.129870","DOIUrl":null,"url":null,"abstract":"<div><div>Constructing heterojunction photocatalysts with proper charge transfer channels has been confirmed to be a promising strategy for CO<sub>2</sub> photoreduction into chemical fuels. However, promoting photoinduced charge separation in traditional heterojunction catalysts still remains a big obstacle for practical applications. In this work, the TiO<sub>2</sub>(B)-Anatase\\ZnTcPc twin S-scheme heterojunctions are designed and constructed by loading Zn (II) tetracarboxy phthalocyanine (ZnTcPc) on the prepared TiO<sub>2</sub>(B)-Anatase biphase TiO<sub>2</sub> nanowires by self-assemble strategy. The TiO<sub>2</sub>(B)-Anatase\\ZnTcPc twin S-scheme heterojunctions effectively promote charge transport across the multi-heterointerfaces and enhance visible light absorption and CO<sub>2</sub> adsorption. Thus the optimized hybrid photocatalyst exhibits a remarkable photocatalytic CO<sub>2</sub> reduction performance, and the CO yield reaches 237.8μmol g<sup>−1</sup>h<sup>−1</sup>. The CO<sub>2</sub> photoreduction mechanism and charge transfer properties in the twin S-scheme heterojunction are also investigated and characterized. This research offers a viable approach to enhancing the heterojunction system for excellent photocatalytic performance.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biphase TiO2\\\\Zn-tetracarboxy-phthalocyanine twin S-scheme heterojunction nanowires with efficient charge transfer and CO2 photocatalytic conversion\",\"authors\":\"\",\"doi\":\"10.1016/j.seppur.2024.129870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Constructing heterojunction photocatalysts with proper charge transfer channels has been confirmed to be a promising strategy for CO<sub>2</sub> photoreduction into chemical fuels. However, promoting photoinduced charge separation in traditional heterojunction catalysts still remains a big obstacle for practical applications. In this work, the TiO<sub>2</sub>(B)-Anatase\\\\ZnTcPc twin S-scheme heterojunctions are designed and constructed by loading Zn (II) tetracarboxy phthalocyanine (ZnTcPc) on the prepared TiO<sub>2</sub>(B)-Anatase biphase TiO<sub>2</sub> nanowires by self-assemble strategy. The TiO<sub>2</sub>(B)-Anatase\\\\ZnTcPc twin S-scheme heterojunctions effectively promote charge transport across the multi-heterointerfaces and enhance visible light absorption and CO<sub>2</sub> adsorption. Thus the optimized hybrid photocatalyst exhibits a remarkable photocatalytic CO<sub>2</sub> reduction performance, and the CO yield reaches 237.8μmol g<sup>−1</sup>h<sup>−1</sup>. The CO<sub>2</sub> photoreduction mechanism and charge transfer properties in the twin S-scheme heterojunction are also investigated and characterized. This research offers a viable approach to enhancing the heterojunction system for excellent photocatalytic performance.</div></div>\",\"PeriodicalId\":427,\"journal\":{\"name\":\"Separation and Purification Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation and Purification Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1383586624036098\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586624036098","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

构建具有适当电荷转移通道的异质结光催化剂已被证实是将二氧化碳光还原成化学燃料的一种前景广阔的策略。然而,在传统异质结催化剂中促进光诱导电荷分离仍然是实际应用的一大障碍。在这项工作中,通过自组装策略在制备好的TiO2(B)-Anatase双相TiO2纳米线上负载四羧基酞菁锌(Zn (II) tetracarboxy phthalocyanine,ZnTcPc),设计并构建了TiO2(B)-Anatase/ZnTcPc双S型异质结。TiO2(B)-Anatase/ZnTcPc双S型异质结有效地促进了电荷在多异质界面上的传输,增强了对可见光的吸收和对二氧化碳的吸附。因此,优化后的混合光催化剂具有显著的光催化 CO2 还原性能,CO 产率达到 237.8μmol g-1h-1。此外,还研究并表征了孪生 S 型异质结中的二氧化碳光催化机理和电荷转移特性。这项研究为提高异质结系统的光催化性能提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biphase TiO2\Zn-tetracarboxy-phthalocyanine twin S-scheme heterojunction nanowires with efficient charge transfer and CO2 photocatalytic conversion
Constructing heterojunction photocatalysts with proper charge transfer channels has been confirmed to be a promising strategy for CO2 photoreduction into chemical fuels. However, promoting photoinduced charge separation in traditional heterojunction catalysts still remains a big obstacle for practical applications. In this work, the TiO2(B)-Anatase\ZnTcPc twin S-scheme heterojunctions are designed and constructed by loading Zn (II) tetracarboxy phthalocyanine (ZnTcPc) on the prepared TiO2(B)-Anatase biphase TiO2 nanowires by self-assemble strategy. The TiO2(B)-Anatase\ZnTcPc twin S-scheme heterojunctions effectively promote charge transport across the multi-heterointerfaces and enhance visible light absorption and CO2 adsorption. Thus the optimized hybrid photocatalyst exhibits a remarkable photocatalytic CO2 reduction performance, and the CO yield reaches 237.8μmol g−1h−1. The CO2 photoreduction mechanism and charge transfer properties in the twin S-scheme heterojunction are also investigated and characterized. This research offers a viable approach to enhancing the heterojunction system for excellent photocatalytic performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
The enhanced mechanism of ZnIn2S4-CoFe2O4-BC activated peroxomonosulfate under visible light for the degradation of fluoroquinolones Techno-economic insights into one-pot bacterial astaxanthin extraction and sustainable therapeutic product development using natural solvent mixtures Catalytic combustion of propane over second metal-modified Ru supported on CeO2 nanosheet Comparative study for removal of potentially toxic metals from the groundwater of Lakhanpur Area, Odisha, India by using two different hydrogels Facile fabrication of robust cork-inspired superhydrophobic aerogel for continuous oil spill and emulsion absorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1