改进心电图建模的分数微积分整合:麦克沙利模型扩展

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Medical Engineering & Physics Pub Date : 2024-10-01 DOI:10.1016/j.medengphy.2024.104237
Abdelghani Takha , Mohamed Lamine Talbi , Philippe Ravier
{"title":"改进心电图建模的分数微积分整合:麦克沙利模型扩展","authors":"Abdelghani Takha ,&nbsp;Mohamed Lamine Talbi ,&nbsp;Philippe Ravier","doi":"10.1016/j.medengphy.2024.104237","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a new method for modeling electrocardiogram (ECG)<span><span><sup>1</sup></span></span> waveforms using Fractional Differential Equations (FDEs). By incorporating fractional calculus into the well-established McSharry model, the proposed approach achieves improved representation and high precision for a wide range of ECG waveforms. The research focuses on the impact of integrating fractional derivatives into Integer Differential Equation (IDE) models, enhancing the fidelity of ECG signal modeling.</div><div>To optimize the model's unknown parameters, a combination of the Predictor-Corrector method for solving FDEs and genetic algorithms for optimization is utilized. The effectiveness of the fractional-order model is assessed through distortion metrics, providing a comprehensive evaluation of the modeling quality.</div><div>Comparisons show that the fractional-order model outperforms the traditional McSharry IDE model in modeling quality and compression efficiency. It improves modeling quality by 48.40 % in MSE and compression efficiency by 23.18 % when applied on five beat types of MIT/BIH arrhythmia database. The fractional-order model demonstrates enhanced flexibility while preserving essential McSharry model characteristics, with fractional orders (α) ranging from 0.96 to 0.99 across five beat types.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional calculus integration for improved ECG modeling: A McSharry model expansion\",\"authors\":\"Abdelghani Takha ,&nbsp;Mohamed Lamine Talbi ,&nbsp;Philippe Ravier\",\"doi\":\"10.1016/j.medengphy.2024.104237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a new method for modeling electrocardiogram (ECG)<span><span><sup>1</sup></span></span> waveforms using Fractional Differential Equations (FDEs). By incorporating fractional calculus into the well-established McSharry model, the proposed approach achieves improved representation and high precision for a wide range of ECG waveforms. The research focuses on the impact of integrating fractional derivatives into Integer Differential Equation (IDE) models, enhancing the fidelity of ECG signal modeling.</div><div>To optimize the model's unknown parameters, a combination of the Predictor-Corrector method for solving FDEs and genetic algorithms for optimization is utilized. The effectiveness of the fractional-order model is assessed through distortion metrics, providing a comprehensive evaluation of the modeling quality.</div><div>Comparisons show that the fractional-order model outperforms the traditional McSharry IDE model in modeling quality and compression efficiency. It improves modeling quality by 48.40 % in MSE and compression efficiency by 23.18 % when applied on five beat types of MIT/BIH arrhythmia database. The fractional-order model demonstrates enhanced flexibility while preserving essential McSharry model characteristics, with fractional orders (α) ranging from 0.96 to 0.99 across five beat types.</div></div>\",\"PeriodicalId\":49836,\"journal\":{\"name\":\"Medical Engineering & Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Engineering & Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350453324001383\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001383","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种利用分数微分方程(FDE)对心电图(ECG)1 波形进行建模的新方法。通过将分数微积分纳入成熟的 McSharry 模型,所提出的方法改进了对各种心电图波形的表示并提高了精度。为了优化模型的未知参数,研究人员结合使用了用于求解 FDE 的预测器-校正器方法和用于优化的遗传算法。比较表明,分数阶模型在建模质量和压缩效率方面优于传统的 McSharry IDE 模型。在应用于 MIT/BIH 心律失常数据库的五种搏动类型时,该模型的 MSE 提高了 48.40%,压缩效率提高了 23.18%。分数阶模型在保留 McSharry 模型基本特征的同时提高了灵活性,五种搏动类型的分数阶 (α)范围从 0.96 到 0.99 不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fractional calculus integration for improved ECG modeling: A McSharry model expansion
This study introduces a new method for modeling electrocardiogram (ECG)1 waveforms using Fractional Differential Equations (FDEs). By incorporating fractional calculus into the well-established McSharry model, the proposed approach achieves improved representation and high precision for a wide range of ECG waveforms. The research focuses on the impact of integrating fractional derivatives into Integer Differential Equation (IDE) models, enhancing the fidelity of ECG signal modeling.
To optimize the model's unknown parameters, a combination of the Predictor-Corrector method for solving FDEs and genetic algorithms for optimization is utilized. The effectiveness of the fractional-order model is assessed through distortion metrics, providing a comprehensive evaluation of the modeling quality.
Comparisons show that the fractional-order model outperforms the traditional McSharry IDE model in modeling quality and compression efficiency. It improves modeling quality by 48.40 % in MSE and compression efficiency by 23.18 % when applied on five beat types of MIT/BIH arrhythmia database. The fractional-order model demonstrates enhanced flexibility while preserving essential McSharry model characteristics, with fractional orders (α) ranging from 0.96 to 0.99 across five beat types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Engineering & Physics
Medical Engineering & Physics 工程技术-工程:生物医学
CiteScore
4.30
自引率
4.50%
发文量
172
审稿时长
3.0 months
期刊介绍: Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.
期刊最新文献
Monitoring focused ultrasound ablation surgery (FUAS) using echo amplitudes of the therapeutic focused transducer 3D bioheat transfer mapping reveals nanomagnetic particles effectiveness in radiofrequency hyperthermia breast cancer treatment comparing to experimental study Bone ingrowth in randomly distributed porous interbody cage during lumbar spinal fusion A method of nucleus image segmentation and counting based on TC-UNet++ and distance watershed Integrated analysis of clinical indicators and mechanical properties in cancellous bone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1