Ruiqi Liu , Liqiang Zhang , Xinlu Han, Yiya Wang, Jinyu Li, Chenxing Huang, Xinwei Wang, Riyi Lin
{"title":"基于稻壳炭的 NiO/Fe2O3 纳米催化剂降低重油粘度","authors":"Ruiqi Liu , Liqiang Zhang , Xinlu Han, Yiya Wang, Jinyu Li, Chenxing Huang, Xinwei Wang, Riyi Lin","doi":"10.1016/j.jaap.2024.106788","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, catalytic hydrothermal cracking has gained significant attention as an effective technology for reducing the viscosity of heavy oil in the field of heavy oil recovery. However, the current catalyst temperature window is relatively high, leading to high energy consumption in heavy oil extraction. The development of catalysts that can effectively reduce the viscosity of heavy oil at low temperatures is important to reduce energy consumption in the thermal recovery process of heavy oil. Biochar-based catalysts exhibit good low-temperature activity. Therefore, this study used modified rice husk char as a carrier to develop NiO-RHC, Fe<sub>2</sub>O<sub>3</sub>-RHC, and NiO/Fe<sub>2</sub>O<sub>3</sub>-RHC catalysts, and investigated their performance in low-temperature catalytic viscosity reduction. Various methods were used to characterize the physical and chemical properties of the catalysts, and the effects of catalyst type and addition amounts on the catalytic viscosity reduction reaction were examined. The results showed that the catalytic performance of the dual-active component catalyst was better than that of NiO-RHC and Fe<sub>2</sub>O<sub>3</sub>-RHC. Under the catalysis of NiO/Fe<sub>2</sub>O<sub>3</sub>-RHC, the viscosity of heavy oil decreased by 81.81 %. As the catalyst addition amounts increased, the viscosity reduction rate of heavy oil also increased. The optimal catalyst addition amount was 1.00 wt%, and the heavy component content in the oil sample was reduced by 4.14 % after the catalytic reaction. Finally, the mechanism of heavy oil viscosity reduction was analyzed. It was found that the breaking of C-S bonds was a significant factor in reducing heavy oil viscosity, and the S in H<sub>2</sub>S mainly came from thioether and sulfoxide sulfur. This study provides valuable references for further research on low-temperature viscosity reduction in heavy oil.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106788"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscosity reduction of heavy oil based on rice husk char-based nanocatalysts of NiO/Fe2O3\",\"authors\":\"Ruiqi Liu , Liqiang Zhang , Xinlu Han, Yiya Wang, Jinyu Li, Chenxing Huang, Xinwei Wang, Riyi Lin\",\"doi\":\"10.1016/j.jaap.2024.106788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, catalytic hydrothermal cracking has gained significant attention as an effective technology for reducing the viscosity of heavy oil in the field of heavy oil recovery. However, the current catalyst temperature window is relatively high, leading to high energy consumption in heavy oil extraction. The development of catalysts that can effectively reduce the viscosity of heavy oil at low temperatures is important to reduce energy consumption in the thermal recovery process of heavy oil. Biochar-based catalysts exhibit good low-temperature activity. Therefore, this study used modified rice husk char as a carrier to develop NiO-RHC, Fe<sub>2</sub>O<sub>3</sub>-RHC, and NiO/Fe<sub>2</sub>O<sub>3</sub>-RHC catalysts, and investigated their performance in low-temperature catalytic viscosity reduction. Various methods were used to characterize the physical and chemical properties of the catalysts, and the effects of catalyst type and addition amounts on the catalytic viscosity reduction reaction were examined. The results showed that the catalytic performance of the dual-active component catalyst was better than that of NiO-RHC and Fe<sub>2</sub>O<sub>3</sub>-RHC. Under the catalysis of NiO/Fe<sub>2</sub>O<sub>3</sub>-RHC, the viscosity of heavy oil decreased by 81.81 %. As the catalyst addition amounts increased, the viscosity reduction rate of heavy oil also increased. The optimal catalyst addition amount was 1.00 wt%, and the heavy component content in the oil sample was reduced by 4.14 % after the catalytic reaction. Finally, the mechanism of heavy oil viscosity reduction was analyzed. It was found that the breaking of C-S bonds was a significant factor in reducing heavy oil viscosity, and the S in H<sub>2</sub>S mainly came from thioether and sulfoxide sulfur. This study provides valuable references for further research on low-temperature viscosity reduction in heavy oil.</div></div>\",\"PeriodicalId\":345,\"journal\":{\"name\":\"Journal of Analytical and Applied Pyrolysis\",\"volume\":\"183 \",\"pages\":\"Article 106788\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical and Applied Pyrolysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165237024004431\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024004431","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Viscosity reduction of heavy oil based on rice husk char-based nanocatalysts of NiO/Fe2O3
In recent years, catalytic hydrothermal cracking has gained significant attention as an effective technology for reducing the viscosity of heavy oil in the field of heavy oil recovery. However, the current catalyst temperature window is relatively high, leading to high energy consumption in heavy oil extraction. The development of catalysts that can effectively reduce the viscosity of heavy oil at low temperatures is important to reduce energy consumption in the thermal recovery process of heavy oil. Biochar-based catalysts exhibit good low-temperature activity. Therefore, this study used modified rice husk char as a carrier to develop NiO-RHC, Fe2O3-RHC, and NiO/Fe2O3-RHC catalysts, and investigated their performance in low-temperature catalytic viscosity reduction. Various methods were used to characterize the physical and chemical properties of the catalysts, and the effects of catalyst type and addition amounts on the catalytic viscosity reduction reaction were examined. The results showed that the catalytic performance of the dual-active component catalyst was better than that of NiO-RHC and Fe2O3-RHC. Under the catalysis of NiO/Fe2O3-RHC, the viscosity of heavy oil decreased by 81.81 %. As the catalyst addition amounts increased, the viscosity reduction rate of heavy oil also increased. The optimal catalyst addition amount was 1.00 wt%, and the heavy component content in the oil sample was reduced by 4.14 % after the catalytic reaction. Finally, the mechanism of heavy oil viscosity reduction was analyzed. It was found that the breaking of C-S bonds was a significant factor in reducing heavy oil viscosity, and the S in H2S mainly came from thioether and sulfoxide sulfur. This study provides valuable references for further research on low-temperature viscosity reduction in heavy oil.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.