具有高屈服强度和大延展性的新型高锰双相孪生诱导塑性轻质钢

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research and Technology-Jmr&t Pub Date : 2024-09-24 DOI:10.1016/j.jmrt.2024.09.198
{"title":"具有高屈服强度和大延展性的新型高锰双相孪生诱导塑性轻质钢","authors":"","doi":"10.1016/j.jmrt.2024.09.198","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we report a novel high-Mn Fe–21Mn–6Al–4Si–1C (wt.%) duplex lightweight steel with concurrent chemical ordering and twinning-induced plasticity effects. This steel is capable of achieving an exceptional combination of strength and ductility following either cold-rolling and annealing at 1000 °C or subsequent short-term aging at 550 °C. In its as-annealed state, this steel primarily consists of γ-austenite and α-ferrite, with α-ferrite appearing as dispersed particles within fully recrystallized γ grains. Furthermore, L′1<sub>2</sub>- and D0<sub>3</sub>-type ordered nanodomains exist within these two phases, respectively. The aging treatment negligibly affects the size and volume fraction of both the γ-austenite and α-ferrite, yet it enhances the degree of ordering as well as the size and volume fraction of their ordered nanodomains, leading to a rise in yield strength from ∼800 to ∼1062 MPa and a decline in total elongation from ∼60.4% to ∼44.4%. The high yield strength of this steel originates from multiple strengthening mechanisms involving dislocation interactions with solute atoms, ordered nanodomains, γ grain boundaries and γ/α phase boundaries. This steel plastically deforms via planar slip during the initial stages. The rather small γ grain size, coupled with the presence of hard α-ferrite particles, fosters the dynamic slip band refinement (DSBR) effect, thereby enhancing the flow stress sufficiently to trigger deformation twinning in the steel during the later stages. The DSBR effect, combined with the progressive formation of deformation twins, stacking faults and Lomer-Cottrell locks, imparts pronounced strain hardenability to this steel, leading to its outstanding ductility.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel high-Mn duplex twinning-induced plasticity lightweight steel with high yield strength and large ductility\",\"authors\":\"\",\"doi\":\"10.1016/j.jmrt.2024.09.198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we report a novel high-Mn Fe–21Mn–6Al–4Si–1C (wt.%) duplex lightweight steel with concurrent chemical ordering and twinning-induced plasticity effects. This steel is capable of achieving an exceptional combination of strength and ductility following either cold-rolling and annealing at 1000 °C or subsequent short-term aging at 550 °C. In its as-annealed state, this steel primarily consists of γ-austenite and α-ferrite, with α-ferrite appearing as dispersed particles within fully recrystallized γ grains. Furthermore, L′1<sub>2</sub>- and D0<sub>3</sub>-type ordered nanodomains exist within these two phases, respectively. The aging treatment negligibly affects the size and volume fraction of both the γ-austenite and α-ferrite, yet it enhances the degree of ordering as well as the size and volume fraction of their ordered nanodomains, leading to a rise in yield strength from ∼800 to ∼1062 MPa and a decline in total elongation from ∼60.4% to ∼44.4%. The high yield strength of this steel originates from multiple strengthening mechanisms involving dislocation interactions with solute atoms, ordered nanodomains, γ grain boundaries and γ/α phase boundaries. This steel plastically deforms via planar slip during the initial stages. The rather small γ grain size, coupled with the presence of hard α-ferrite particles, fosters the dynamic slip band refinement (DSBR) effect, thereby enhancing the flow stress sufficiently to trigger deformation twinning in the steel during the later stages. The DSBR effect, combined with the progressive formation of deformation twins, stacking faults and Lomer-Cottrell locks, imparts pronounced strain hardenability to this steel, leading to its outstanding ductility.</div></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785424022038\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424022038","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们报告了一种新型高锰 Fe-21Mn-6Al-4Si-1C(重量百分比)双相轻质钢,它同时具有化学有序和孪生诱导塑性效应。这种钢在经过 1000 °C 的冷轧和退火或随后在 550 °C 的短期时效处理后,能够获得优异的强度和延展性组合。在退火状态下,这种钢主要由γ-奥氏体和α-铁素体组成,α-铁素体以分散颗粒的形式出现在完全再结晶的γ晶粒中。此外,在这两种相中分别存在 L′12 型和 D03 型有序纳米域。时效处理对γ-奥氏体和α-铁素体的尺寸和体积分数的影响微乎其微,但却提高了有序化程度及其有序纳米域的尺寸和体积分数,从而使屈服强度从 800 MPa 上升到 1062 MPa,总伸长率从 60.4% 下降到 44.4%。这种钢的高屈服强度源于多种强化机制,包括位错与溶质原子的相互作用、有序纳米域、γ 晶界和 γ/α 相界。这种钢在初始阶段通过平面滑移产生塑性变形。γ晶粒尺寸相当小,加上存在坚硬的α铁氧体颗粒,促进了动态滑移带细化(DSBR)效应,从而充分提高了流动应力,在后期阶段引发了钢的变形孪生。DSBR 效应与变形孪晶、堆叠断层和 Lomer-Cottrell 锁的逐渐形成相结合,赋予了这种钢明显的应变硬化性,从而使其具有出色的延展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel high-Mn duplex twinning-induced plasticity lightweight steel with high yield strength and large ductility
In this study, we report a novel high-Mn Fe–21Mn–6Al–4Si–1C (wt.%) duplex lightweight steel with concurrent chemical ordering and twinning-induced plasticity effects. This steel is capable of achieving an exceptional combination of strength and ductility following either cold-rolling and annealing at 1000 °C or subsequent short-term aging at 550 °C. In its as-annealed state, this steel primarily consists of γ-austenite and α-ferrite, with α-ferrite appearing as dispersed particles within fully recrystallized γ grains. Furthermore, L′12- and D03-type ordered nanodomains exist within these two phases, respectively. The aging treatment negligibly affects the size and volume fraction of both the γ-austenite and α-ferrite, yet it enhances the degree of ordering as well as the size and volume fraction of their ordered nanodomains, leading to a rise in yield strength from ∼800 to ∼1062 MPa and a decline in total elongation from ∼60.4% to ∼44.4%. The high yield strength of this steel originates from multiple strengthening mechanisms involving dislocation interactions with solute atoms, ordered nanodomains, γ grain boundaries and γ/α phase boundaries. This steel plastically deforms via planar slip during the initial stages. The rather small γ grain size, coupled with the presence of hard α-ferrite particles, fosters the dynamic slip band refinement (DSBR) effect, thereby enhancing the flow stress sufficiently to trigger deformation twinning in the steel during the later stages. The DSBR effect, combined with the progressive formation of deformation twins, stacking faults and Lomer-Cottrell locks, imparts pronounced strain hardenability to this steel, leading to its outstanding ductility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
期刊最新文献
Investigation of the impact of process parameters and thermal treatments on mechanical properties and microstructure of ScanCromAl ® manufactured via powder bed fusion laser beam process A novel high-Mn duplex twinning-induced plasticity lightweight steel with high yield strength and large ductility Influence of laser absorptivity of CuCr0.8 substrate surface state on the characteristics of laser directed energy deposition inconel 718 single track Additively manufactured FeCoNiSi0.2 alloy with excellent soft magnetic and mechanical properties through texture engineering Experimental study on the ballistic performance of CFRP/AFB sandwich plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1