{"title":"基于轨道振动信号的 H 级预测驶近的列车","authors":"Ugne Orinaite, Rafal Burdzik, Vinayak Ranjan, Minvydas Ragulskis","doi":"10.1111/mice.13349","DOIUrl":null,"url":null,"abstract":"This paper introduces a method for forecasting the arrival of trains by analyzing track vibration signals. The proposed algorithms, based on H‐ranks of track vibration signals, can generate early alerts for approaching trains. These algorithms are robust to additive noise and environmental conditions. The theoretical foundation of the method involves the application of matrix operations to detect significant changes in vibration patterns, indicating an approaching train.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"20 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of approaching trains based on H‐ranks of track vibration signals\",\"authors\":\"Ugne Orinaite, Rafal Burdzik, Vinayak Ranjan, Minvydas Ragulskis\",\"doi\":\"10.1111/mice.13349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a method for forecasting the arrival of trains by analyzing track vibration signals. The proposed algorithms, based on H‐ranks of track vibration signals, can generate early alerts for approaching trains. These algorithms are robust to additive noise and environmental conditions. The theoretical foundation of the method involves the application of matrix operations to detect significant changes in vibration patterns, indicating an approaching train.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13349\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13349","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Prediction of approaching trains based on H‐ranks of track vibration signals
This paper introduces a method for forecasting the arrival of trains by analyzing track vibration signals. The proposed algorithms, based on H‐ranks of track vibration signals, can generate early alerts for approaching trains. These algorithms are robust to additive noise and environmental conditions. The theoretical foundation of the method involves the application of matrix operations to detect significant changes in vibration patterns, indicating an approaching train.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.