设计基于 LiTFSI 的双盐电解质的溶剂-阴离子相互作用,以维持高性能 NCM622 阴极

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-09-30 DOI:10.1016/j.ensm.2024.103816
Pin Du , Jiale Wan , Baolong Qiu , Hongwei Xie , Qiushi Song , Dihua Wang , Huayi Yin
{"title":"设计基于 LiTFSI 的双盐电解质的溶剂-阴离子相互作用,以维持高性能 NCM622 阴极","authors":"Pin Du ,&nbsp;Jiale Wan ,&nbsp;Baolong Qiu ,&nbsp;Hongwei Xie ,&nbsp;Qiushi Song ,&nbsp;Dihua Wang ,&nbsp;Huayi Yin","doi":"10.1016/j.ensm.2024.103816","DOIUrl":null,"url":null,"abstract":"<div><div>Electrolytes play a vital role in determining the performances of lithium-ion batteries (LIBs), especially the high-voltage LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> (NCM622) cathode in LiTFSI-based electrolytes. Herein, we report a high-capacity and stable NCM622 cathode that can be realized in LiTFSI-based (named T) carbonate electrolytes by tuning the intermolecular interactions using the added LiDFOB (named D). In the 1 M dual-salt electrolyte, the cathode failure and Al corrosion are suppressed in the 4.5 V-NCM622||Li batteries, because a uniform interfacial layer and weaker Li<sup>+</sup>-solvent interactions are built to inhibit the parasitic reactions. As a result, the capacity retention reaches 94.68% after 200 cycles and the 10 C-rate capacity is about 160 mA h g<sup>-1</sup> in the 1 M T + D dual-salt electrolyte. Unlike the commonly used electrolyte, the FEC additive increases the de-solvation barrier and disturbs the cycle stability in (T + D) dual-salt systems. Density functional theory (DFT) calculation and nuclear magnetic resonance (NMR) spectra reveal that the additive FEC changes the solvent-solvent and solvent-anion interactions in the presence of T + D, which weakens the electrolyte-cathode compatibility. This work indicates that regulating the solvation structure and interfacial chemistry from solvent-solvent/anion interactions is promising for designing high-performance LIBs by using dual‐salt electrolytes.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103816"},"PeriodicalIF":18.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering the solvent-anion interactions of LiTFSI-based dual-salt electrolytes to sustain high-performance NCM622 cathodes\",\"authors\":\"Pin Du ,&nbsp;Jiale Wan ,&nbsp;Baolong Qiu ,&nbsp;Hongwei Xie ,&nbsp;Qiushi Song ,&nbsp;Dihua Wang ,&nbsp;Huayi Yin\",\"doi\":\"10.1016/j.ensm.2024.103816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrolytes play a vital role in determining the performances of lithium-ion batteries (LIBs), especially the high-voltage LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> (NCM622) cathode in LiTFSI-based electrolytes. Herein, we report a high-capacity and stable NCM622 cathode that can be realized in LiTFSI-based (named T) carbonate electrolytes by tuning the intermolecular interactions using the added LiDFOB (named D). In the 1 M dual-salt electrolyte, the cathode failure and Al corrosion are suppressed in the 4.5 V-NCM622||Li batteries, because a uniform interfacial layer and weaker Li<sup>+</sup>-solvent interactions are built to inhibit the parasitic reactions. As a result, the capacity retention reaches 94.68% after 200 cycles and the 10 C-rate capacity is about 160 mA h g<sup>-1</sup> in the 1 M T + D dual-salt electrolyte. Unlike the commonly used electrolyte, the FEC additive increases the de-solvation barrier and disturbs the cycle stability in (T + D) dual-salt systems. Density functional theory (DFT) calculation and nuclear magnetic resonance (NMR) spectra reveal that the additive FEC changes the solvent-solvent and solvent-anion interactions in the presence of T + D, which weakens the electrolyte-cathode compatibility. This work indicates that regulating the solvation structure and interfacial chemistry from solvent-solvent/anion interactions is promising for designing high-performance LIBs by using dual‐salt electrolytes.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"73 \",\"pages\":\"Article 103816\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829724006421\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006421","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电解质在决定锂离子电池(LIB)性能方面起着至关重要的作用,尤其是在基于 LiTFSI 的电解质中的高压 LiNi0.6Co0.2Mn0.2O2 (NCM622) 正极。在此,我们报告了一种高容量、稳定的 NCM622 阴极,它可以在基于 LiTFSI(命名为 T)的碳酸盐电解质中实现,方法是使用添加的 LiDFOB(命名为 D)调整分子间的相互作用。在 1 M 双盐电解质中,4.5 V-NCM622||Li 电池的阴极失效和铝腐蚀得到了抑制,这是因为建立了均匀的界面层和较弱的 Li+-溶剂相互作用,从而抑制了寄生反应。因此,在 1 M T+D 双盐电解液中,200 次循环后的容量保持率达到 94.68%,10 C 速率容量约为 160 mA h g-1。与常用电解液不同的是,FEC 添加剂增加了(T+D)双盐体系中的脱溶障碍,干扰了循环稳定性。密度泛函理论(DFT)计算和核磁共振(NMR)光谱显示,添加剂 FEC 改变了 T+D 存在时溶剂-溶剂和溶剂-阴离子之间的相互作用,从而削弱了电解质-阴极的相容性。这项工作表明,从溶剂-溶剂/阴离子相互作用中调节溶解结构和界面化学性质,对于利用双盐电解质设计高性能锂离子电池大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering the solvent-anion interactions of LiTFSI-based dual-salt electrolytes to sustain high-performance NCM622 cathodes
Electrolytes play a vital role in determining the performances of lithium-ion batteries (LIBs), especially the high-voltage LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode in LiTFSI-based electrolytes. Herein, we report a high-capacity and stable NCM622 cathode that can be realized in LiTFSI-based (named T) carbonate electrolytes by tuning the intermolecular interactions using the added LiDFOB (named D). In the 1 M dual-salt electrolyte, the cathode failure and Al corrosion are suppressed in the 4.5 V-NCM622||Li batteries, because a uniform interfacial layer and weaker Li+-solvent interactions are built to inhibit the parasitic reactions. As a result, the capacity retention reaches 94.68% after 200 cycles and the 10 C-rate capacity is about 160 mA h g-1 in the 1 M T + D dual-salt electrolyte. Unlike the commonly used electrolyte, the FEC additive increases the de-solvation barrier and disturbs the cycle stability in (T + D) dual-salt systems. Density functional theory (DFT) calculation and nuclear magnetic resonance (NMR) spectra reveal that the additive FEC changes the solvent-solvent and solvent-anion interactions in the presence of T + D, which weakens the electrolyte-cathode compatibility. This work indicates that regulating the solvation structure and interfacial chemistry from solvent-solvent/anion interactions is promising for designing high-performance LIBs by using dual‐salt electrolytes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Optimized molecular interactions significantly enhance capacitive energy storage in polymer blends at 150 °C A High Power Flexible Zn-Air Battery via Concurrent PAA Modulation and Structural Tuning Surface acidity regulation for boosting Li2O2 decomposition towards lower charge overpotential Li–O2 batteries “Preferential Adsorption-Decomposition and Strong Binding” Strategy-Derived Interphase Enabling Fast-Charging and Wide-Temperature Sodium Metal Batteries Unlocking Advanced Sodium Storage Performance: High-Entropy Modulates Crystallographic Sites with Reversible Multi-Electron Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1