由锌-空气/碘电池驱动的基于电催化碘氧化的氢和 I2/I3- 共生配置

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-10-01 DOI:10.1016/j.ensm.2024.103817
Chang Chen , Libo Zhu , Javeed Mahmood , Zhong-Hua Xue , Xu Yu , Qin Li , Ziwei Chang , Han Tian , Fantao Kong , Haitao Huang , Cafer T. Yavuz , Xiangzhi Cui , Jianlin Shi
{"title":"由锌-空气/碘电池驱动的基于电催化碘氧化的氢和 I2/I3- 共生配置","authors":"Chang Chen ,&nbsp;Libo Zhu ,&nbsp;Javeed Mahmood ,&nbsp;Zhong-Hua Xue ,&nbsp;Xu Yu ,&nbsp;Qin Li ,&nbsp;Ziwei Chang ,&nbsp;Han Tian ,&nbsp;Fantao Kong ,&nbsp;Haitao Huang ,&nbsp;Cafer T. Yavuz ,&nbsp;Xiangzhi Cui ,&nbsp;Jianlin Shi","doi":"10.1016/j.ensm.2024.103817","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical water splitting and energy storage are key for a sustainable energy future, despite the challenges related to undesirable overpotentials and high voltage requirements. Herein, we introduce a synergistic approach between a low overpotential hydrogen evolution reaction (HER) and a low voltage zinc-air/iodine battery (ZAIB) by coupling with iodide oxidation half reactions. By developing a Pt/Co<sub>3</sub>O<sub>4</sub> electrocatalyst in two steps and with under 2% Pt loading, we achieve an unprecedented low full cell potential for hydrogen generation at 0.574 V, exhibiting an ultra-high reduction of energy consumption of 64.7%. The Pt/Co<sub>3</sub>O<sub>4</sub> electrode also enables ZAIB to record a power density of 154 mW cm<sup>−2</sup> at an ultra-low charging potential of 1.68 V. Mechanistic studies and DFT calculations of the novel electrode confirm an electron rich Pt-Co interface and favorable Pt-I interactions, facilitating both HER and IOR reactions. Our design provides critical technology for potential large-scale renewable energy projects.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103817"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An electrocatalytic iodine oxidations-based configuration for hydrogen and I2/I3− co-productions driven by the Zn-air/iodine battery\",\"authors\":\"Chang Chen ,&nbsp;Libo Zhu ,&nbsp;Javeed Mahmood ,&nbsp;Zhong-Hua Xue ,&nbsp;Xu Yu ,&nbsp;Qin Li ,&nbsp;Ziwei Chang ,&nbsp;Han Tian ,&nbsp;Fantao Kong ,&nbsp;Haitao Huang ,&nbsp;Cafer T. Yavuz ,&nbsp;Xiangzhi Cui ,&nbsp;Jianlin Shi\",\"doi\":\"10.1016/j.ensm.2024.103817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrochemical water splitting and energy storage are key for a sustainable energy future, despite the challenges related to undesirable overpotentials and high voltage requirements. Herein, we introduce a synergistic approach between a low overpotential hydrogen evolution reaction (HER) and a low voltage zinc-air/iodine battery (ZAIB) by coupling with iodide oxidation half reactions. By developing a Pt/Co<sub>3</sub>O<sub>4</sub> electrocatalyst in two steps and with under 2% Pt loading, we achieve an unprecedented low full cell potential for hydrogen generation at 0.574 V, exhibiting an ultra-high reduction of energy consumption of 64.7%. The Pt/Co<sub>3</sub>O<sub>4</sub> electrode also enables ZAIB to record a power density of 154 mW cm<sup>−2</sup> at an ultra-low charging potential of 1.68 V. Mechanistic studies and DFT calculations of the novel electrode confirm an electron rich Pt-Co interface and favorable Pt-I interactions, facilitating both HER and IOR reactions. Our design provides critical technology for potential large-scale renewable energy projects.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"73 \",\"pages\":\"Article 103817\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829724006433\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006433","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管存在与不良过电位和高电压要求相关的挑战,但电化学水分离和能量存储是未来可持续能源的关键。在此,我们通过与碘氧化半反应的耦合,介绍了一种低过电位氢进化反应(HER)与低电压锌-空气/碘电池(ZAIB)之间的协同方法。通过分两步开发铂/Co3O4 电催化剂,在铂载量低于 2% 的情况下,我们实现了前所未有的 0.574 V 低全电池制氢电位,能耗降低了 64.7%。铂/Co3O4 电极还使ZAIB 在 1.68 V 的超低充电电位下达到了 154 mW cm-2 的功率密度。对这种新型电极进行的机理研究和 DFT 计算证实,富电子的铂-钴界面和有利的铂-碘相互作用可促进 HER 和 IOR 反应。我们的设计为潜在的大规模可再生能源项目提供了关键技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An electrocatalytic iodine oxidations-based configuration for hydrogen and I2/I3− co-productions driven by the Zn-air/iodine battery
Electrochemical water splitting and energy storage are key for a sustainable energy future, despite the challenges related to undesirable overpotentials and high voltage requirements. Herein, we introduce a synergistic approach between a low overpotential hydrogen evolution reaction (HER) and a low voltage zinc-air/iodine battery (ZAIB) by coupling with iodide oxidation half reactions. By developing a Pt/Co3O4 electrocatalyst in two steps and with under 2% Pt loading, we achieve an unprecedented low full cell potential for hydrogen generation at 0.574 V, exhibiting an ultra-high reduction of energy consumption of 64.7%. The Pt/Co3O4 electrode also enables ZAIB to record a power density of 154 mW cm−2 at an ultra-low charging potential of 1.68 V. Mechanistic studies and DFT calculations of the novel electrode confirm an electron rich Pt-Co interface and favorable Pt-I interactions, facilitating both HER and IOR reactions. Our design provides critical technology for potential large-scale renewable energy projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Enhancing Structural Flexibility in P2-type Ni-Mn-based Na-layered Cathodes for High Power-Capability and Fast Charging/Discharging Performance Acetamide-based hydrated eutectic electrolytes for supercapacitors with high voltage and low self-discharge Honeycomb-like Superstructure of 3D Sodiophilic Host for Anode-Free Sodium Batteries Using CrN4 Moiety to Weaken the Dissociation Barrier of Hydroxyl on Adjacent Single Iron Atom for Efficient Oxygen Reduction Competitive Oxidation Mechanism Endows MXene-Based Supercapacitors with High-Temperature Tolerance and Self-Healing Capability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1