Atin Pramanik , Alexis G. Manche , Fredrik Lindgren , Tore Ericsson , Lennart Häggström , David B. Cordes , A. Robert Armstrong
{"title":"NaLiFe(C2O4)2:显示阳离子和阴离子氧化还原作用的多阴离子锂/纳离子电池阴极","authors":"Atin Pramanik , Alexis G. Manche , Fredrik Lindgren , Tore Ericsson , Lennart Häggström , David B. Cordes , A. Robert Armstrong","doi":"10.1016/j.ensm.2024.103821","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, polyanionic compounds have received great interest as alternative cathode materials to conventional oxides due to their different advantages in cost, safety, structural stability, as well as being environmentally friendly. However, the vast majority of polyanionic materials reported so far rely exclusively upon the redox reaction of the transition metal for lithium/sodium transfer.</div><div>The development of multielectron redox-active cathode materials is a top priority for achieving high energy density with long cycle life in the next-generation secondary battery applications. Triggering anion redox activity is a promising strategy to enhance the energy density of polyanionic cathode materials for Li/Na-ion batteries. In addition to transition metal redox activity, the oxalate group also shows redox behavior enabling reversible charge/discharge and high capacity without gas evolution.</div><div>Herein, we report NaLiFe(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub> as a new positive electrode and use different characterization techniques such as Raman spectroscopy and Mössbauer analyses to characterise this dual-ion redox process experimentally. First-principles calculations also help to understand the interactions between the transition metal and the oxalate group as the main factor that modulates the cationic and polyanionic redox couples in these materials.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"73 ","pages":"Article 103821"},"PeriodicalIF":18.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NaLiFe(C2O4)2: A polyanionic Li/Na-ion battery cathode exhibiting cationic and anionic redox\",\"authors\":\"Atin Pramanik , Alexis G. Manche , Fredrik Lindgren , Tore Ericsson , Lennart Häggström , David B. Cordes , A. Robert Armstrong\",\"doi\":\"10.1016/j.ensm.2024.103821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, polyanionic compounds have received great interest as alternative cathode materials to conventional oxides due to their different advantages in cost, safety, structural stability, as well as being environmentally friendly. However, the vast majority of polyanionic materials reported so far rely exclusively upon the redox reaction of the transition metal for lithium/sodium transfer.</div><div>The development of multielectron redox-active cathode materials is a top priority for achieving high energy density with long cycle life in the next-generation secondary battery applications. Triggering anion redox activity is a promising strategy to enhance the energy density of polyanionic cathode materials for Li/Na-ion batteries. In addition to transition metal redox activity, the oxalate group also shows redox behavior enabling reversible charge/discharge and high capacity without gas evolution.</div><div>Herein, we report NaLiFe(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub> as a new positive electrode and use different characterization techniques such as Raman spectroscopy and Mössbauer analyses to characterise this dual-ion redox process experimentally. First-principles calculations also help to understand the interactions between the transition metal and the oxalate group as the main factor that modulates the cationic and polyanionic redox couples in these materials.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"73 \",\"pages\":\"Article 103821\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829724006470\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724006470","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
NaLiFe(C2O4)2: A polyanionic Li/Na-ion battery cathode exhibiting cationic and anionic redox
Recently, polyanionic compounds have received great interest as alternative cathode materials to conventional oxides due to their different advantages in cost, safety, structural stability, as well as being environmentally friendly. However, the vast majority of polyanionic materials reported so far rely exclusively upon the redox reaction of the transition metal for lithium/sodium transfer.
The development of multielectron redox-active cathode materials is a top priority for achieving high energy density with long cycle life in the next-generation secondary battery applications. Triggering anion redox activity is a promising strategy to enhance the energy density of polyanionic cathode materials for Li/Na-ion batteries. In addition to transition metal redox activity, the oxalate group also shows redox behavior enabling reversible charge/discharge and high capacity without gas evolution.
Herein, we report NaLiFe(C2O4)2 as a new positive electrode and use different characterization techniques such as Raman spectroscopy and Mössbauer analyses to characterise this dual-ion redox process experimentally. First-principles calculations also help to understand the interactions between the transition metal and the oxalate group as the main factor that modulates the cationic and polyanionic redox couples in these materials.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.