世界海岸线抵御浮游生物入侵的海洋学能力差异。

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY Ecology Letters Pub Date : 2024-10-02 DOI:10.1111/ele.14520
James E. Byers, James M. Pringle
{"title":"世界海岸线抵御浮游生物入侵的海洋学能力差异。","authors":"James E. Byers,&nbsp;James M. Pringle","doi":"10.1111/ele.14520","DOIUrl":null,"url":null,"abstract":"<p>For marine species with planktonic dispersal, invasion of open ocean coastlines is impaired by the physical adversity of ocean currents moving larvae downstream and offshore. The extent species are affected by physical adversity depends on interactions of the currents with larval life history traits such as planktonic duration, depth and seasonality. Ecologists have struggled to understand how these traits expose species to adverse ocean currents and affect their ability to persist when introduced to novel habitat. We use a high-resolution global ocean model to isolate the role of ocean currents on the persistence of a larval-producing species introduced to every open coastline of the world. We find physical adversity to invasion varies globally by several orders of magnitude. Larval duration is the most influential life history trait because increased duration prolongs species' exposure to ocean currents. Furthermore, variation of physical adversity with life history elucidates how trade-offs between dispersal traits vary globally.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14520","citationCount":"0","resultStr":"{\"title\":\"Variation in Oceanographic Resistance of the World's Coastlines to Invasion by Species With Planktonic Dispersal\",\"authors\":\"James E. Byers,&nbsp;James M. Pringle\",\"doi\":\"10.1111/ele.14520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For marine species with planktonic dispersal, invasion of open ocean coastlines is impaired by the physical adversity of ocean currents moving larvae downstream and offshore. The extent species are affected by physical adversity depends on interactions of the currents with larval life history traits such as planktonic duration, depth and seasonality. Ecologists have struggled to understand how these traits expose species to adverse ocean currents and affect their ability to persist when introduced to novel habitat. We use a high-resolution global ocean model to isolate the role of ocean currents on the persistence of a larval-producing species introduced to every open coastline of the world. We find physical adversity to invasion varies globally by several orders of magnitude. Larval duration is the most influential life history trait because increased duration prolongs species' exposure to ocean currents. Furthermore, variation of physical adversity with life history elucidates how trade-offs between dispersal traits vary globally.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14520\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14520\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14520","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对于具有浮游散布特性的海洋物种来说,洋流使幼虫顺流而下并离岸,这种物理逆境阻碍了它们对开阔洋海岸线的入侵。物种受物理逆境影响的程度取决于洋流与幼虫生活史特征的相互作用,如浮游时间、深度和季节性。生态学家一直在努力了解这些特征如何使物种受到逆洋流的影响,以及在引入新生境时如何影响它们的存活能力。我们利用一个高分辨率的全球海洋模型,分离出洋流对引入世界上每一个开放海岸线的幼虫生产物种的持久性所起的作用。我们发现,入侵的物理逆境在全球范围内有几个数量级的差异。幼体持续时间是影响最大的生活史特征,因为持续时间的延长会延长物种暴露于洋流的时间。此外,物理逆境随生活史的变化阐明了全球范围内不同扩散特征之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variation in Oceanographic Resistance of the World's Coastlines to Invasion by Species With Planktonic Dispersal

For marine species with planktonic dispersal, invasion of open ocean coastlines is impaired by the physical adversity of ocean currents moving larvae downstream and offshore. The extent species are affected by physical adversity depends on interactions of the currents with larval life history traits such as planktonic duration, depth and seasonality. Ecologists have struggled to understand how these traits expose species to adverse ocean currents and affect their ability to persist when introduced to novel habitat. We use a high-resolution global ocean model to isolate the role of ocean currents on the persistence of a larval-producing species introduced to every open coastline of the world. We find physical adversity to invasion varies globally by several orders of magnitude. Larval duration is the most influential life history trait because increased duration prolongs species' exposure to ocean currents. Furthermore, variation of physical adversity with life history elucidates how trade-offs between dispersal traits vary globally.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
期刊最新文献
The Impact of Microbial Interactions on Ecosystem Function Intensifies Under Stress Mycorrhizal Types Regulate Tree Spatial Associations in Temperate Forests: Ectomycorrhizal Trees Might Favour Species Coexistence Acclimation Unifies the Scaling of Carbon Assimilation Across Climate Gradients and Levels of Organisation Seasonally Changing Interactions of Species Traits of Termites and Trees Promote Complementarity in Coarse Wood Decomposition Seasonality Structures Avian Functional Diversity and Niche Packing Across North America
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1