Danilo F. B. dos Santos, Jacob E. Herschberger, Bijay Subedi, Victoria M. Pocius, Wesley J. Neely, Sasha E. Greenspan, C. Guilherme Becker, Gustavo Q. Romero, Mônica F. Kersch-Becker
{"title":"叶片庇护所有利于节肢动物在植物上定植并增强微生物多样性","authors":"Danilo F. B. dos Santos, Jacob E. Herschberger, Bijay Subedi, Victoria M. Pocius, Wesley J. Neely, Sasha E. Greenspan, C. Guilherme Becker, Gustavo Q. Romero, Mônica F. Kersch-Becker","doi":"10.1111/ele.14499","DOIUrl":null,"url":null,"abstract":"<p>Shelter-building insects are important ecosystem engineers, playing critical roles in structuring arthropod communities. Nonetheless, the influence of leaf shelters and arthropods on plant–associated microbiota remains largely unexplored. Arthropods that visit or inhabit plants can contribute to the leaf microbial community, resulting in significant changes in plant–microbe interactions. By artificially constructing leaf shelters, we provide evidence that shelter-building insects influence not only the arthropod community structure but also impact the phyllosphere microbiota. Leaf shelters exhibited higher abundance and richness of arthropods, changing the associated arthropod community composition. These shelters also altered the composition and community structure of phyllosphere microbiota, promoting greater richness and diversity of bacteria at the phyllosphere. In leaf shelters, microbial diversity positively correlated with the richness and diversity of herbivores. These findings demonstrate the critical role of leaf shelters in structuring both arthropod and microbial communities through altered microhabitats and species interactions.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 9","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14499","citationCount":"0","resultStr":"{\"title\":\"Leaf Shelters Facilitate the Colonisation of Arthropods and Enhance Microbial Diversity on Plants\",\"authors\":\"Danilo F. B. dos Santos, Jacob E. Herschberger, Bijay Subedi, Victoria M. Pocius, Wesley J. Neely, Sasha E. Greenspan, C. Guilherme Becker, Gustavo Q. Romero, Mônica F. Kersch-Becker\",\"doi\":\"10.1111/ele.14499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Shelter-building insects are important ecosystem engineers, playing critical roles in structuring arthropod communities. Nonetheless, the influence of leaf shelters and arthropods on plant–associated microbiota remains largely unexplored. Arthropods that visit or inhabit plants can contribute to the leaf microbial community, resulting in significant changes in plant–microbe interactions. By artificially constructing leaf shelters, we provide evidence that shelter-building insects influence not only the arthropod community structure but also impact the phyllosphere microbiota. Leaf shelters exhibited higher abundance and richness of arthropods, changing the associated arthropod community composition. These shelters also altered the composition and community structure of phyllosphere microbiota, promoting greater richness and diversity of bacteria at the phyllosphere. In leaf shelters, microbial diversity positively correlated with the richness and diversity of herbivores. These findings demonstrate the critical role of leaf shelters in structuring both arthropod and microbial communities through altered microhabitats and species interactions.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14499\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14499\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14499","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Leaf Shelters Facilitate the Colonisation of Arthropods and Enhance Microbial Diversity on Plants
Shelter-building insects are important ecosystem engineers, playing critical roles in structuring arthropod communities. Nonetheless, the influence of leaf shelters and arthropods on plant–associated microbiota remains largely unexplored. Arthropods that visit or inhabit plants can contribute to the leaf microbial community, resulting in significant changes in plant–microbe interactions. By artificially constructing leaf shelters, we provide evidence that shelter-building insects influence not only the arthropod community structure but also impact the phyllosphere microbiota. Leaf shelters exhibited higher abundance and richness of arthropods, changing the associated arthropod community composition. These shelters also altered the composition and community structure of phyllosphere microbiota, promoting greater richness and diversity of bacteria at the phyllosphere. In leaf shelters, microbial diversity positively correlated with the richness and diversity of herbivores. These findings demonstrate the critical role of leaf shelters in structuring both arthropod and microbial communities through altered microhabitats and species interactions.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.