脑钠磁共振成像衍生先验支持使用基于个性化模型的癫痫方法估计致痫区。

IF 3.6 3区 医学 Q2 NEUROSCIENCES Network Neuroscience Pub Date : 2024-10-01 eCollection Date: 2024-01-01 DOI:10.1162/netn_a_00371
Mikhael Azilinon, Huifang E Wang, Julia Makhalova, Wafaa Zaaraoui, Jean-Philippe Ranjeva, Fabrice Bartolomei, Maxime Guye, Viktor Jirsa
{"title":"脑钠磁共振成像衍生先验支持使用基于个性化模型的癫痫方法估计致痫区。","authors":"Mikhael Azilinon, Huifang E Wang, Julia Makhalova, Wafaa Zaaraoui, Jean-Philippe Ranjeva, Fabrice Bartolomei, Maxime Guye, Viktor Jirsa","doi":"10.1162/netn_a_00371","DOIUrl":null,"url":null,"abstract":"<p><p>Patients presenting with drug-resistant epilepsy are eligible for surgery aiming to remove the regions involved in the production of seizure activities, the so-called epileptogenic zone network (EZN). Thus the accurate estimation of the EZN is crucial. Data-driven, personalized virtual brain models derived from patient-specific anatomical and functional data are used in Virtual Epileptic Patient (VEP) to estimate the EZN via optimization methods from Bayesian inference. The Bayesian inference approach used in previous VEP integrates priors, based on the features of stereotactic-electroencephalography (SEEG) seizures' recordings. Here, we propose new priors, based on quantitative <sup>23</sup>Na-MRI. The <sup>23</sup>Na-MRI data were acquired at 7T and provided several features characterizing the sodium signal decay. The hypothesis is that the sodium features are biomarkers of neuronal excitability related to the EZN and will add additional information to VEP estimation. In this paper, we first proposed the mapping from <sup>23</sup>Na-MRI features to predict the EZN via a machine learning approach. Then, we exploited these predictions as priors in the VEP pipeline. The statistical results demonstrated that compared with the results from current VEP, the result from VEP based on <sup>23</sup>Na-MRI prior has better balanced accuracy, and the similar weighted harmonic mean of the precision and recall.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"8 3","pages":"673-696"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340996/pdf/","citationCount":"0","resultStr":"{\"title\":\"Brain sodium MRI-derived priors support the estimation of epileptogenic zones using personalized model-based methods in epilepsy.\",\"authors\":\"Mikhael Azilinon, Huifang E Wang, Julia Makhalova, Wafaa Zaaraoui, Jean-Philippe Ranjeva, Fabrice Bartolomei, Maxime Guye, Viktor Jirsa\",\"doi\":\"10.1162/netn_a_00371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patients presenting with drug-resistant epilepsy are eligible for surgery aiming to remove the regions involved in the production of seizure activities, the so-called epileptogenic zone network (EZN). Thus the accurate estimation of the EZN is crucial. Data-driven, personalized virtual brain models derived from patient-specific anatomical and functional data are used in Virtual Epileptic Patient (VEP) to estimate the EZN via optimization methods from Bayesian inference. The Bayesian inference approach used in previous VEP integrates priors, based on the features of stereotactic-electroencephalography (SEEG) seizures' recordings. Here, we propose new priors, based on quantitative <sup>23</sup>Na-MRI. The <sup>23</sup>Na-MRI data were acquired at 7T and provided several features characterizing the sodium signal decay. The hypothesis is that the sodium features are biomarkers of neuronal excitability related to the EZN and will add additional information to VEP estimation. In this paper, we first proposed the mapping from <sup>23</sup>Na-MRI features to predict the EZN via a machine learning approach. Then, we exploited these predictions as priors in the VEP pipeline. The statistical results demonstrated that compared with the results from current VEP, the result from VEP based on <sup>23</sup>Na-MRI prior has better balanced accuracy, and the similar weighted harmonic mean of the precision and recall.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"8 3\",\"pages\":\"673-696\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340996/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00371\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00371","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

耐药性癫痫患者可以接受手术治疗,目的是切除产生癫痫活动的区域,即所谓的致痫区网络(EZN)。因此,准确估计 EZN 至关重要。虚拟癫痫患者(VEP)中使用了数据驱动的个性化虚拟大脑模型,这些模型来自患者特定的解剖和功能数据,通过贝叶斯推理的优化方法来估计 EZN。以前的 VEP 中使用的贝叶斯推理方法整合了基于立体定向脑电图(SEEG)癫痫发作记录特征的先验。在此,我们根据定量 23Na-MRI 提出了新的先验。23Na-MRI 数据是在 7T 下获得的,提供了钠信号衰减的几个特征。我们的假设是,钠信号特征是与 EZN 相关的神经元兴奋性的生物标记,并将为 VEP 估计增加额外的信息。在本文中,我们首先提出了从 23Na-MRI 特征到通过机器学习方法预测 EZN 的映射。然后,我们利用这些预测作为 VEP 管道中的先验。统计结果表明,与当前的 VEP 结果相比,基于 23Na-MRI 先验的 VEP 结果具有更好的平衡准确性,并且精确度和召回率的加权谐波平均值相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain sodium MRI-derived priors support the estimation of epileptogenic zones using personalized model-based methods in epilepsy.

Patients presenting with drug-resistant epilepsy are eligible for surgery aiming to remove the regions involved in the production of seizure activities, the so-called epileptogenic zone network (EZN). Thus the accurate estimation of the EZN is crucial. Data-driven, personalized virtual brain models derived from patient-specific anatomical and functional data are used in Virtual Epileptic Patient (VEP) to estimate the EZN via optimization methods from Bayesian inference. The Bayesian inference approach used in previous VEP integrates priors, based on the features of stereotactic-electroencephalography (SEEG) seizures' recordings. Here, we propose new priors, based on quantitative 23Na-MRI. The 23Na-MRI data were acquired at 7T and provided several features characterizing the sodium signal decay. The hypothesis is that the sodium features are biomarkers of neuronal excitability related to the EZN and will add additional information to VEP estimation. In this paper, we first proposed the mapping from 23Na-MRI features to predict the EZN via a machine learning approach. Then, we exploited these predictions as priors in the VEP pipeline. The statistical results demonstrated that compared with the results from current VEP, the result from VEP based on 23Na-MRI prior has better balanced accuracy, and the similar weighted harmonic mean of the precision and recall.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
期刊最新文献
A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence. Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data. Brain sodium MRI-derived priors support the estimation of epileptogenic zones using personalized model-based methods in epilepsy. Developmental differences in canonical cortical networks: Insights from microstructure-informed tractography. Frequency modulation increases the specificity of time-resolved connectivity: A resting-state fMRI study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1