Clare Puttick, Thomas P. Jones, Michelle M. Leung, Felipe Galvez-Cancino, Jiali Liu, Manuel Varas-Godoy, Andrew Rowan, Oriol Pich, Carlos Martinez-Ruiz, Robert Bentham, Krijn K. Dijkstra, James R. M. Black, Rachel Rosenthal, Nnennaya Kanu, Kevin Litchfield, Roberto Salgado, David A. Moore, Peter Van Loo, Mariam Jamal-Hanjani, Sergio A. Quezada, TRACERx Consortium, Charles Swanton, Nicholas McGranahan
{"title":"MHC Hammer 揭示了癌症进化过程中的遗传和非遗传 HLA 干扰","authors":"Clare Puttick, Thomas P. Jones, Michelle M. Leung, Felipe Galvez-Cancino, Jiali Liu, Manuel Varas-Godoy, Andrew Rowan, Oriol Pich, Carlos Martinez-Ruiz, Robert Bentham, Krijn K. Dijkstra, James R. M. Black, Rachel Rosenthal, Nnennaya Kanu, Kevin Litchfield, Roberto Salgado, David A. Moore, Peter Van Loo, Mariam Jamal-Hanjani, Sergio A. Quezada, TRACERx Consortium, Charles Swanton, Nicholas McGranahan","doi":"10.1038/s41588-024-01883-8","DOIUrl":null,"url":null,"abstract":"Disruption of the class I human leukocyte antigen (HLA) molecules has important implications for immune evasion and tumor evolution. We developed major histocompatibility complex loss of heterozygosity (LOH), allele-specific mutation and measurement of expression and repression (MHC Hammer). We identified extensive variability in HLA allelic expression and pervasive HLA alternative splicing in normal lung and breast tissue. In lung TRACERx and lung and breast TCGA cohorts, 61% of lung adenocarcinoma (LUAD), 76% of lung squamous cell carcinoma (LUSC) and 35% of estrogen receptor-positive (ER+) cancers harbored class I HLA transcriptional repression, while HLA tumor-enriched alternative splicing occurred in 31%, 11% and 15% of LUAD, LUSC and ER+ cancers. Consistent with the importance of HLA dysfunction in tumor evolution, in LUADs, HLA LOH was associated with metastasis and LUAD primary tumor regions seeding a metastasis had a lower effective neoantigen burden than non-seeding regions. These data highlight the extent and importance of HLA transcriptomic disruption, including repression and alternative splicing in cancer evolution. Major histocompatibility complex (MHC) loss of heterozygosity, allele-specific mutation and measurement of expression and repression (MHC Hammer) detects disruption to human leukocyte antigens due to mutations, loss of heterogeneity, altered gene expression or alternative splicing. Applied to lung and breast cancer datasets, the tool shows that these aberrations are common across cancer and can have clinical implications.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"56 10","pages":"2121-2131"},"PeriodicalIF":31.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-024-01883-8.pdf","citationCount":"0","resultStr":"{\"title\":\"MHC Hammer reveals genetic and non-genetic HLA disruption in cancer evolution\",\"authors\":\"Clare Puttick, Thomas P. Jones, Michelle M. Leung, Felipe Galvez-Cancino, Jiali Liu, Manuel Varas-Godoy, Andrew Rowan, Oriol Pich, Carlos Martinez-Ruiz, Robert Bentham, Krijn K. Dijkstra, James R. M. Black, Rachel Rosenthal, Nnennaya Kanu, Kevin Litchfield, Roberto Salgado, David A. Moore, Peter Van Loo, Mariam Jamal-Hanjani, Sergio A. Quezada, TRACERx Consortium, Charles Swanton, Nicholas McGranahan\",\"doi\":\"10.1038/s41588-024-01883-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disruption of the class I human leukocyte antigen (HLA) molecules has important implications for immune evasion and tumor evolution. We developed major histocompatibility complex loss of heterozygosity (LOH), allele-specific mutation and measurement of expression and repression (MHC Hammer). We identified extensive variability in HLA allelic expression and pervasive HLA alternative splicing in normal lung and breast tissue. In lung TRACERx and lung and breast TCGA cohorts, 61% of lung adenocarcinoma (LUAD), 76% of lung squamous cell carcinoma (LUSC) and 35% of estrogen receptor-positive (ER+) cancers harbored class I HLA transcriptional repression, while HLA tumor-enriched alternative splicing occurred in 31%, 11% and 15% of LUAD, LUSC and ER+ cancers. Consistent with the importance of HLA dysfunction in tumor evolution, in LUADs, HLA LOH was associated with metastasis and LUAD primary tumor regions seeding a metastasis had a lower effective neoantigen burden than non-seeding regions. These data highlight the extent and importance of HLA transcriptomic disruption, including repression and alternative splicing in cancer evolution. Major histocompatibility complex (MHC) loss of heterozygosity, allele-specific mutation and measurement of expression and repression (MHC Hammer) detects disruption to human leukocyte antigens due to mutations, loss of heterogeneity, altered gene expression or alternative splicing. Applied to lung and breast cancer datasets, the tool shows that these aberrations are common across cancer and can have clinical implications.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"56 10\",\"pages\":\"2121-2131\"},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41588-024-01883-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-024-01883-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-01883-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
MHC Hammer reveals genetic and non-genetic HLA disruption in cancer evolution
Disruption of the class I human leukocyte antigen (HLA) molecules has important implications for immune evasion and tumor evolution. We developed major histocompatibility complex loss of heterozygosity (LOH), allele-specific mutation and measurement of expression and repression (MHC Hammer). We identified extensive variability in HLA allelic expression and pervasive HLA alternative splicing in normal lung and breast tissue. In lung TRACERx and lung and breast TCGA cohorts, 61% of lung adenocarcinoma (LUAD), 76% of lung squamous cell carcinoma (LUSC) and 35% of estrogen receptor-positive (ER+) cancers harbored class I HLA transcriptional repression, while HLA tumor-enriched alternative splicing occurred in 31%, 11% and 15% of LUAD, LUSC and ER+ cancers. Consistent with the importance of HLA dysfunction in tumor evolution, in LUADs, HLA LOH was associated with metastasis and LUAD primary tumor regions seeding a metastasis had a lower effective neoantigen burden than non-seeding regions. These data highlight the extent and importance of HLA transcriptomic disruption, including repression and alternative splicing in cancer evolution. Major histocompatibility complex (MHC) loss of heterozygosity, allele-specific mutation and measurement of expression and repression (MHC Hammer) detects disruption to human leukocyte antigens due to mutations, loss of heterogeneity, altered gene expression or alternative splicing. Applied to lung and breast cancer datasets, the tool shows that these aberrations are common across cancer and can have clinical implications.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution