通过电光的纳米光子光谱转换实现量子系统的亚多普勒光谱学

IF 32.3 1区 物理与天体物理 Q1 OPTICS Nature Photonics Pub Date : 2024-10-02 DOI:10.1038/s41566-024-01532-w
David A. Long, Jordan R. Stone, Yi Sun, Daron Westly, Kartik Srinivasan
{"title":"通过电光的纳米光子光谱转换实现量子系统的亚多普勒光谱学","authors":"David A. Long, Jordan R. Stone, Yi Sun, Daron Westly, Kartik Srinivasan","doi":"10.1038/s41566-024-01532-w","DOIUrl":null,"url":null,"abstract":"<p>An outstanding challenge for deployable quantum technologies is high-resolution laser spectroscopy at the specific wavelengths of ultranarrow transitions in atomic and solid-state quantum systems. Here we demonstrate a highly flexible approach to high-resolution spectroscopy for quantum technologies across a broad range of wavelengths, through the synergistic combination of fine-tooth electro-optic frequency combs and efficient Kerr nonlinear nanophotonics. We show that such fine-tooth combs, which provide simultaneous high spectral and temporal resolution in atomic spectroscopy, undergo coherent spectral translation with essentially no efficiency loss through third-order optical parametric oscillation (OPO) in a silicon-nitride microring. This enables nearly a million comb pump teeth, separated by a 1 kHz spacing, to be translated onto signal and idler beams that can be located across a broad range of wavelengths in the visible and short near-infrared. The generated wavelengths are subject to OPO phase and frequency-matching conditions that are highly controllable through nanophotonic dispersion engineering, and in the current implementation span between 589 and 1,150 nm, with both the electro-optic comb generation process and its spectral translation not introducing appreciable broadening to the pump laser linewidth. We further demonstrate the application of this approach to quantum systems by performing sub-Doppler spectroscopy of the hyperfine transitions of Cs atomic vapour with our electro-optically driven Kerr nonlinear light source. The generality, robustness and agility of our approach, as well as its compatibility with photonic integration, are expected to lead to its widespread applications in areas such as quantum sensing, telecommunications and atomic clocks.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"202 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-Doppler spectroscopy of quantum systems through nanophotonic spectral translation of electro-optic light\",\"authors\":\"David A. Long, Jordan R. Stone, Yi Sun, Daron Westly, Kartik Srinivasan\",\"doi\":\"10.1038/s41566-024-01532-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An outstanding challenge for deployable quantum technologies is high-resolution laser spectroscopy at the specific wavelengths of ultranarrow transitions in atomic and solid-state quantum systems. Here we demonstrate a highly flexible approach to high-resolution spectroscopy for quantum technologies across a broad range of wavelengths, through the synergistic combination of fine-tooth electro-optic frequency combs and efficient Kerr nonlinear nanophotonics. We show that such fine-tooth combs, which provide simultaneous high spectral and temporal resolution in atomic spectroscopy, undergo coherent spectral translation with essentially no efficiency loss through third-order optical parametric oscillation (OPO) in a silicon-nitride microring. This enables nearly a million comb pump teeth, separated by a 1 kHz spacing, to be translated onto signal and idler beams that can be located across a broad range of wavelengths in the visible and short near-infrared. The generated wavelengths are subject to OPO phase and frequency-matching conditions that are highly controllable through nanophotonic dispersion engineering, and in the current implementation span between 589 and 1,150 nm, with both the electro-optic comb generation process and its spectral translation not introducing appreciable broadening to the pump laser linewidth. We further demonstrate the application of this approach to quantum systems by performing sub-Doppler spectroscopy of the hyperfine transitions of Cs atomic vapour with our electro-optically driven Kerr nonlinear light source. The generality, robustness and agility of our approach, as well as its compatibility with photonic integration, are expected to lead to its widespread applications in areas such as quantum sensing, telecommunications and atomic clocks.</p>\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"202 1\",\"pages\":\"\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41566-024-01532-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01532-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

可部署量子技术面临的一个突出挑战是在原子和固态量子系统中超微跃迁的特定波长上进行高分辨率激光光谱分析。在这里,我们展示了一种高度灵活的方法,通过细齿电光频率梳和高效的克尔非线性纳米光子学的协同组合,在广泛的波长范围内为量子技术提供高分辨率光谱。我们的研究表明,这种细齿梳在原子光谱学中可同时提供高光谱和时间分辨率,通过氮化硅微孔中的三阶光参量振荡(OPO),可实现相干光谱平移,且基本上没有效率损失。这使得近百万个梳状泵浦齿(间距为 1 kHz)能够被转换到信号和惰波束上,这些信号和惰波束可位于可见光和短近红外的宽波长范围内。生成的波长受 OPO 相位和频率匹配条件的限制,通过纳米光子色散工程可实现高度可控,在目前的实施中,波长范围在 589 纳米到 1150 纳米之间,电光梳生成过程及其光谱转换不会对泵浦激光器线宽造成明显的增宽。我们利用电光驱动的克尔非线性光源对铯原子蒸气的超正弦跃迁进行了亚多普勒光谱分析,进一步证明了这种方法在量子系统中的应用。我们的方法具有通用性、稳健性和灵活性,而且与光子集成兼容,有望在量子传感、电信和原子钟等领域得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sub-Doppler spectroscopy of quantum systems through nanophotonic spectral translation of electro-optic light

An outstanding challenge for deployable quantum technologies is high-resolution laser spectroscopy at the specific wavelengths of ultranarrow transitions in atomic and solid-state quantum systems. Here we demonstrate a highly flexible approach to high-resolution spectroscopy for quantum technologies across a broad range of wavelengths, through the synergistic combination of fine-tooth electro-optic frequency combs and efficient Kerr nonlinear nanophotonics. We show that such fine-tooth combs, which provide simultaneous high spectral and temporal resolution in atomic spectroscopy, undergo coherent spectral translation with essentially no efficiency loss through third-order optical parametric oscillation (OPO) in a silicon-nitride microring. This enables nearly a million comb pump teeth, separated by a 1 kHz spacing, to be translated onto signal and idler beams that can be located across a broad range of wavelengths in the visible and short near-infrared. The generated wavelengths are subject to OPO phase and frequency-matching conditions that are highly controllable through nanophotonic dispersion engineering, and in the current implementation span between 589 and 1,150 nm, with both the electro-optic comb generation process and its spectral translation not introducing appreciable broadening to the pump laser linewidth. We further demonstrate the application of this approach to quantum systems by performing sub-Doppler spectroscopy of the hyperfine transitions of Cs atomic vapour with our electro-optically driven Kerr nonlinear light source. The generality, robustness and agility of our approach, as well as its compatibility with photonic integration, are expected to lead to its widespread applications in areas such as quantum sensing, telecommunications and atomic clocks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
期刊最新文献
Topological orbital angular momentum extraction and twofold protection of vortex transport Expanding momentum bandgaps in photonic time crystals through resonances Author Correction: Image-guided computational holographic wavefront shaping Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon Attosecond transient interferometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1