宇宙早期无压物质坍缩产生的引力波

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of Cosmology and Astroparticle Physics Pub Date : 2024-10-01 DOI:10.1088/1475-7516/2024/10/006
Ioannis Dalianis and Chris Kouvaris
{"title":"宇宙早期无压物质坍缩产生的引力波","authors":"Ioannis Dalianis and Chris Kouvaris","doi":"10.1088/1475-7516/2024/10/006","DOIUrl":null,"url":null,"abstract":"If an early matter phase of the Universe existed after inflation with the proper power spectrum, enhanced density perturbations can decouple from the Hubble flow, turn around and collapse. In contrast to what happens in a radiation dominated Universe where pressure nullifies deviations from sphericity in these perturbations, in a matter dominated Universe, the lack of pressure although on the one hand facilitates the gravitational collapse, it allows small deviations from sphericity to grow substantially as the collapse takes place. The subsequent collapse is complicated: initially as non-spherical deviations grow, the collapsing cloud takes the form of a “Zel'dovich pancake”. After that, the more chaotic and nonlinear stage of violent relaxation begins where shells of the cloud cross and the matter is redistributed within a factor of a few of the free fall timescale, reaching a spherical virialized state. During the whole process, strong gravitational waves are emitted due to the anisotropy of the collapse and the small time interval that the effect takes place. The emission of gravitational waves during the stage of the violent relaxation cannot be easily estimated with an analytical model. We perform an N-body simulation to capture the behaviour of matter during this stage in order to estimate the precise spectrum of gravitational waves produced in this scenario.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravitational waves from collapse of pressureless matter in the early universe\",\"authors\":\"Ioannis Dalianis and Chris Kouvaris\",\"doi\":\"10.1088/1475-7516/2024/10/006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If an early matter phase of the Universe existed after inflation with the proper power spectrum, enhanced density perturbations can decouple from the Hubble flow, turn around and collapse. In contrast to what happens in a radiation dominated Universe where pressure nullifies deviations from sphericity in these perturbations, in a matter dominated Universe, the lack of pressure although on the one hand facilitates the gravitational collapse, it allows small deviations from sphericity to grow substantially as the collapse takes place. The subsequent collapse is complicated: initially as non-spherical deviations grow, the collapsing cloud takes the form of a “Zel'dovich pancake”. After that, the more chaotic and nonlinear stage of violent relaxation begins where shells of the cloud cross and the matter is redistributed within a factor of a few of the free fall timescale, reaching a spherical virialized state. During the whole process, strong gravitational waves are emitted due to the anisotropy of the collapse and the small time interval that the effect takes place. The emission of gravitational waves during the stage of the violent relaxation cannot be easily estimated with an analytical model. We perform an N-body simulation to capture the behaviour of matter during this stage in order to estimate the precise spectrum of gravitational waves produced in this scenario.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2024/10/006\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/10/006","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

如果宇宙的早期物质阶段存在于具有适当功率谱的暴胀之后,那么增强的密度扰动就会与哈勃流脱钩,掉头并坍缩。在辐射主导的宇宙中,这些扰动中的球形偏差会因压力而消失,与此相反,在物质主导的宇宙中,压力的缺乏一方面会促进引力坍缩,另一方面也会让球形偏差随着坍缩的发生而大幅增加。随后的坍缩过程非常复杂:最初,随着非球形偏差的增加,坍缩云呈现出 "泽尔多维奇薄饼 "的形式。之后,开始进入更加混乱和非线性的剧烈弛豫阶段,云的外壳发生交叉,物质在自由落体时间尺度的几倍范围内重新分布,达到球形病毒化状态。在整个过程中,由于坍缩的各向异性和发生效应的时间间隔很小,会发射出强烈的引力波。暴力弛豫阶段的引力波发射无法通过分析模型轻松估算。我们进行了一次 N 体模拟,以捕捉物质在这一阶段的行为,从而估算出在这种情况下产生的引力波的精确频谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gravitational waves from collapse of pressureless matter in the early universe
If an early matter phase of the Universe existed after inflation with the proper power spectrum, enhanced density perturbations can decouple from the Hubble flow, turn around and collapse. In contrast to what happens in a radiation dominated Universe where pressure nullifies deviations from sphericity in these perturbations, in a matter dominated Universe, the lack of pressure although on the one hand facilitates the gravitational collapse, it allows small deviations from sphericity to grow substantially as the collapse takes place. The subsequent collapse is complicated: initially as non-spherical deviations grow, the collapsing cloud takes the form of a “Zel'dovich pancake”. After that, the more chaotic and nonlinear stage of violent relaxation begins where shells of the cloud cross and the matter is redistributed within a factor of a few of the free fall timescale, reaching a spherical virialized state. During the whole process, strong gravitational waves are emitted due to the anisotropy of the collapse and the small time interval that the effect takes place. The emission of gravitational waves during the stage of the violent relaxation cannot be easily estimated with an analytical model. We perform an N-body simulation to capture the behaviour of matter during this stage in order to estimate the precise spectrum of gravitational waves produced in this scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
期刊最新文献
Gravitational waves from a curvature-induced phase transition of a Higgs-portal dark matter sector Theory of interacting vector dark energy and fluid Constraining UV freeze-in of light relics with current and next-generation CMB observations Axion-induced patchy screening of the Cosmic Microwave Background Higgs inflation via a metastable standard model potential, generalised renormalisation frame prescriptions and predictions for primordial gravitational waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1