Tim Dunn, Justin M. Zook, James M. Holt, Satish Narayanasamy
{"title":"利用 vcfdist 对小变异和结构变异调用进行联合基准测试","authors":"Tim Dunn, Justin M. Zook, James M. Holt, Satish Narayanasamy","doi":"10.1186/s13059-024-03394-5","DOIUrl":null,"url":null,"abstract":"In this work, we extend vcfdist to be the first variant call benchmarking tool to jointly evaluate phased single-nucleotide polymorphisms (SNPs), small insertions/deletions (INDELs), and structural variants (SVs) for the whole genome. First, we find that a joint evaluation of small and structural variants uniformly reduces measured errors for SNPs (− 28.9%), INDELs (− 19.3%), and SVs (− 52.4%) across three datasets. vcfdist also corrects a common flaw in phasing evaluations, reducing measured flip errors by over 50%. Lastly, we show that vcfdist is more accurate than previously published works and on par with the newest approaches while providing improved result interpretability.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jointly benchmarking small and structural variant calls with vcfdist\",\"authors\":\"Tim Dunn, Justin M. Zook, James M. Holt, Satish Narayanasamy\",\"doi\":\"10.1186/s13059-024-03394-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we extend vcfdist to be the first variant call benchmarking tool to jointly evaluate phased single-nucleotide polymorphisms (SNPs), small insertions/deletions (INDELs), and structural variants (SVs) for the whole genome. First, we find that a joint evaluation of small and structural variants uniformly reduces measured errors for SNPs (− 28.9%), INDELs (− 19.3%), and SVs (− 52.4%) across three datasets. vcfdist also corrects a common flaw in phasing evaluations, reducing measured flip errors by over 50%. Lastly, we show that vcfdist is more accurate than previously published works and on par with the newest approaches while providing improved result interpretability.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03394-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03394-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Jointly benchmarking small and structural variant calls with vcfdist
In this work, we extend vcfdist to be the first variant call benchmarking tool to jointly evaluate phased single-nucleotide polymorphisms (SNPs), small insertions/deletions (INDELs), and structural variants (SVs) for the whole genome. First, we find that a joint evaluation of small and structural variants uniformly reduces measured errors for SNPs (− 28.9%), INDELs (− 19.3%), and SVs (− 52.4%) across three datasets. vcfdist also corrects a common flaw in phasing evaluations, reducing measured flip errors by over 50%. Lastly, we show that vcfdist is more accurate than previously published works and on par with the newest approaches while providing improved result interpretability.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.