Bernardo Rocha, Pedro Pinho, Paolo Giordani, Laura Concostrina-Zubiri, Gonçalo Vieira, Pedro Pina, Cristina Branquinho, Paula Matos
{"title":"纳入生物相互作用,更好地模拟当前和未来南极海洋植被。","authors":"Bernardo Rocha, Pedro Pinho, Paolo Giordani, Laura Concostrina-Zubiri, Gonçalo Vieira, Pedro Pina, Cristina Branquinho, Paula Matos","doi":"10.1016/j.cub.2024.09.011","DOIUrl":null,"url":null,"abstract":"<p><p>Maritime Antarctica's harsh abiotic conditions forged simple terrestrial ecosystems, mostly constituted of bryophytes, lichens, and vascular plants. Though biotic interactions are, together with abiotic factors, thought to help shape this ecosystem, influencing species' distribution and, indirectly, mediating their response to climate, the importance of these interactions is still fairly unknown. We modeled current and future abundance patterns of bryophytes, lichens, and vascular plants, accounting for biotic interactions and abiotic drivers, along a climatic gradient in maritime Antarctica. The influence of regional climate and other drivers was modeled using structural equation models, with and without biotic interactions. Models with biotic interactions performed better; the one offering higher ecological support was used to estimate current and future spatial distributions of vegetation. Results suggest that plants are confined to lower elevations, negatively impacting bryophytes and lichens, whereas at higher elevations both climate and other drivers influence bryophytes and lichens. Our findings strongly support the use of biotic interactions to predict the spatial distribution of Antarctic vegetation.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"4884-4893.e4"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating biotic interactions to better model current and future vegetation of the maritime Antarctic.\",\"authors\":\"Bernardo Rocha, Pedro Pinho, Paolo Giordani, Laura Concostrina-Zubiri, Gonçalo Vieira, Pedro Pina, Cristina Branquinho, Paula Matos\",\"doi\":\"10.1016/j.cub.2024.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maritime Antarctica's harsh abiotic conditions forged simple terrestrial ecosystems, mostly constituted of bryophytes, lichens, and vascular plants. Though biotic interactions are, together with abiotic factors, thought to help shape this ecosystem, influencing species' distribution and, indirectly, mediating their response to climate, the importance of these interactions is still fairly unknown. We modeled current and future abundance patterns of bryophytes, lichens, and vascular plants, accounting for biotic interactions and abiotic drivers, along a climatic gradient in maritime Antarctica. The influence of regional climate and other drivers was modeled using structural equation models, with and without biotic interactions. Models with biotic interactions performed better; the one offering higher ecological support was used to estimate current and future spatial distributions of vegetation. Results suggest that plants are confined to lower elevations, negatively impacting bryophytes and lichens, whereas at higher elevations both climate and other drivers influence bryophytes and lichens. Our findings strongly support the use of biotic interactions to predict the spatial distribution of Antarctic vegetation.</p>\",\"PeriodicalId\":11359,\"journal\":{\"name\":\"Current Biology\",\"volume\":\" \",\"pages\":\"4884-4893.e4\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2024.09.011\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.09.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Incorporating biotic interactions to better model current and future vegetation of the maritime Antarctic.
Maritime Antarctica's harsh abiotic conditions forged simple terrestrial ecosystems, mostly constituted of bryophytes, lichens, and vascular plants. Though biotic interactions are, together with abiotic factors, thought to help shape this ecosystem, influencing species' distribution and, indirectly, mediating their response to climate, the importance of these interactions is still fairly unknown. We modeled current and future abundance patterns of bryophytes, lichens, and vascular plants, accounting for biotic interactions and abiotic drivers, along a climatic gradient in maritime Antarctica. The influence of regional climate and other drivers was modeled using structural equation models, with and without biotic interactions. Models with biotic interactions performed better; the one offering higher ecological support was used to estimate current and future spatial distributions of vegetation. Results suggest that plants are confined to lower elevations, negatively impacting bryophytes and lichens, whereas at higher elevations both climate and other drivers influence bryophytes and lichens. Our findings strongly support the use of biotic interactions to predict the spatial distribution of Antarctic vegetation.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.