邮政编码和邮政编码制表区链接:对流行病学研究中的偏差的影响》(ZIP Code and ZIP Code Tabulation Area Linkage: Implications for Bias in Epidemiologic Research)。

IF 4.7 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Epidemiology Pub Date : 2025-01-01 Epub Date: 2024-10-01 DOI:10.1097/EDE.0000000000001800
Futu Chen, Beau MacDonald, Yan Xu, Wilma Franco, Alberto Campos, Lawrence A Palinkas, Jill Johnston, Sandrah P Eckel, Erika Garcia
{"title":"邮政编码和邮政编码制表区链接:对流行病学研究中的偏差的影响》(ZIP Code and ZIP Code Tabulation Area Linkage: Implications for Bias in Epidemiologic Research)。","authors":"Futu Chen, Beau MacDonald, Yan Xu, Wilma Franco, Alberto Campos, Lawrence A Palinkas, Jill Johnston, Sandrah P Eckel, Erika Garcia","doi":"10.1097/EDE.0000000000001800","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To our knowledge, no agreed-upon best practices exist for joining U.S. Census ZIP Code Tabulation Areas (ZCTAs) and U.S. Postal Service ZIP Codes (ZIPs). One-to-one linkage using 5-digit ZCTA identifiers excludes ZIPs without direct matches. \"Crosswalk\" linkage may match a ZCTA to multiple ZIPs, avoiding losses.</p><p><strong>Methods: </strong>We compared noncrosswalk and crosswalk linkages nationally and for mortality and health insurance in California. To elucidate selection implications, generalized additive models related sociodemographics to whether ZCTAs contained nonmatching ZIPs.</p><p><strong>Results: </strong>Nationwide, 15% of ZCTAs had nonmatching ZIPs, i.e., ZIPs dropped under noncrosswalk linkage. ZCTAs with nonmatching ZIPs were positively associated with metropolitan core location, lower socioeconomics, and non-White population. In California, 34% of ZIPs in the mortality and 25% in the health insurance data had ZCTAs with nonmatching ZIPs; however, these ZIPs constitute only 0.03% of total mortality and 0.44% of total insurance enrollees.</p><p><strong>Conclusions: </strong>Our study findings support the use of crosswalk linkages and ZCTAs as a unit of analysis. One-to-one linkage may cause bias by differentially excluding ZIPs with more disadvantaged populations, although affected population sizes seem small.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":"115-118"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZIP Code and ZIP Code Tabulation Area Linkage: Implications for Bias in Epidemiologic Research.\",\"authors\":\"Futu Chen, Beau MacDonald, Yan Xu, Wilma Franco, Alberto Campos, Lawrence A Palinkas, Jill Johnston, Sandrah P Eckel, Erika Garcia\",\"doi\":\"10.1097/EDE.0000000000001800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To our knowledge, no agreed-upon best practices exist for joining U.S. Census ZIP Code Tabulation Areas (ZCTAs) and U.S. Postal Service ZIP Codes (ZIPs). One-to-one linkage using 5-digit ZCTA identifiers excludes ZIPs without direct matches. \\\"Crosswalk\\\" linkage may match a ZCTA to multiple ZIPs, avoiding losses.</p><p><strong>Methods: </strong>We compared noncrosswalk and crosswalk linkages nationally and for mortality and health insurance in California. To elucidate selection implications, generalized additive models related sociodemographics to whether ZCTAs contained nonmatching ZIPs.</p><p><strong>Results: </strong>Nationwide, 15% of ZCTAs had nonmatching ZIPs, i.e., ZIPs dropped under noncrosswalk linkage. ZCTAs with nonmatching ZIPs were positively associated with metropolitan core location, lower socioeconomics, and non-White population. In California, 34% of ZIPs in the mortality and 25% in the health insurance data had ZCTAs with nonmatching ZIPs; however, these ZIPs constitute only 0.03% of total mortality and 0.44% of total insurance enrollees.</p><p><strong>Conclusions: </strong>Our study findings support the use of crosswalk linkages and ZCTAs as a unit of analysis. One-to-one linkage may cause bias by differentially excluding ZIPs with more disadvantaged populations, although affected population sizes seem small.</p>\",\"PeriodicalId\":11779,\"journal\":{\"name\":\"Epidemiology\",\"volume\":\" \",\"pages\":\"115-118\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/EDE.0000000000001800\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001800","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

背景:据我们所知,在连接美国人口普查邮政编码制表区 (ZCTA) 和美国邮政服务邮政编码 (ZIP) 方面,还没有达成一致的最佳做法。使用 5 位 ZCTA 标识符的一对一连接排除了没有直接匹配的 ZIP。"交叉 "链接可将一个 ZCTA 与多个 ZIP 匹配,避免损失:我们比较了全国范围内的非横向联系和横向联系,以及加利福尼亚州的死亡率和医疗保险情况。为了阐明选择的影响,将社会人口统计学与 ZCTA 是否包含非匹配 ZIPs 相关联的广义加法模型:在全国范围内,15% 的 ZCTAs 有非匹配的 ZIPs,即在非横向联系中丢失的 ZIPs。具有非匹配邮政编码的 ZCTA 与大都市核心位置、较低的社会经济水平和非白人人口呈正相关。在加利福尼亚州,死亡率数据中 34% 的邮区和健康保险数据中 25% 的邮区有不匹配的 ZCTA;然而,这些邮区仅占死亡率总人数的 0.03%,占保险总人数的 0.44%:我们的研究结果支持使用横向联系和 ZCTAs 作为分析单位。尽管受影响的人口数量似乎较小,但一对一的链接可能会因将弱势人口较多的邮政编码区排除在外而造成偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZIP Code and ZIP Code Tabulation Area Linkage: Implications for Bias in Epidemiologic Research.

Background: To our knowledge, no agreed-upon best practices exist for joining U.S. Census ZIP Code Tabulation Areas (ZCTAs) and U.S. Postal Service ZIP Codes (ZIPs). One-to-one linkage using 5-digit ZCTA identifiers excludes ZIPs without direct matches. "Crosswalk" linkage may match a ZCTA to multiple ZIPs, avoiding losses.

Methods: We compared noncrosswalk and crosswalk linkages nationally and for mortality and health insurance in California. To elucidate selection implications, generalized additive models related sociodemographics to whether ZCTAs contained nonmatching ZIPs.

Results: Nationwide, 15% of ZCTAs had nonmatching ZIPs, i.e., ZIPs dropped under noncrosswalk linkage. ZCTAs with nonmatching ZIPs were positively associated with metropolitan core location, lower socioeconomics, and non-White population. In California, 34% of ZIPs in the mortality and 25% in the health insurance data had ZCTAs with nonmatching ZIPs; however, these ZIPs constitute only 0.03% of total mortality and 0.44% of total insurance enrollees.

Conclusions: Our study findings support the use of crosswalk linkages and ZCTAs as a unit of analysis. One-to-one linkage may cause bias by differentially excluding ZIPs with more disadvantaged populations, although affected population sizes seem small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epidemiology
Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.70
自引率
3.70%
发文量
177
审稿时长
6-12 weeks
期刊介绍: Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.
期刊最新文献
Socioeconomic Status, Smoking, and Lung Cancer: Mediation and Bias Analysis in the SYNERGY Study. Low-level PM 2.5 Exposure, Cardiovascular and Nonaccidental Mortality, and Related Health Disparities in 12 US States. Influenza Activity and Preterm Birth in the Atlanta Metropolitan Area: A Time-Series Analysis from 2010 to 2017. Parameterization of Beta Distributions for Bias Parameters of Binary Exposure Misclassification in Probabilistic Bias Analysis. Back to Basics: What Descriptive Epidemiology Can Teach Us About the Recent Rise in Firearm Homicide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1